101 research outputs found

    Minimax optimal procedures for testing the structure of multidimensional functions

    Get PDF
    We present a novel method for detecting some structural characteristics of multidimensional functions. We consider the multidimensional Gaussian white noise model with an anisotropic estimand. Using the relation between the Sobol decomposition and the geometry of multidimensional wavelet basis we can build test statistics for any of the Sobol functional components. We assess the asymptotical minimax optimality of these test statistics and show that they are optimal in presence of anisotropy with respect to the newly determined minimax rates of separation. An appropriate combination of these test statistics allows to test some general structural characteristics such as the atomic dimension or the presence of some variables. Numerical experiments show the potential of our method for studying spatio-temporal processes.G. Claeskens and J.-M. Freyermuth acknowledge the support of the Fund for Scientific Research Flanders, KU Leuven grant GOA/12/14 and of the IAP Research Network P7/06 of the Belgian Science Policy. Jean-Marc Freyermuth's and John Aston's research was supported by the Engineering and Physical Sciences Research Council [EP/K021672/2]

    First Results for the Beam Commissioning of the CERN Multi-Turn Extraction

    Get PDF
    The Multi-Turn Extraction (MTE), a new type of extraction based on beam trapping inside stable islands in horizontal phase space, has been commissioned during the 2008 run of the CERN Proton Synchrotron. Both singleand multi-bunch beams with a total intensity up to 1.4 1013 protons have been extracted with efficiencies up to 98%. Furthermore, injection tests in the CERN Super Proton Synchrotron were performed, with the beam then accelerated and extracted to produce neutrinos for the CERN Neutrino-to-Gran Sasso experiments. The results of the extensive measurement campaign are presented and discussed in detail

    Evidence of a dibaryon spectrum in coherent π0π0d photoproduction at forward deuteron angles

    Get PDF
    The coherent reaction, was studied with the BGOOD experiment at ELSA from threshold to a centre-of-mass energy of 2850 MeV. A full kinematic reconstruction was made, with final state deuterons identified in the forward spectrometer and decays in the central BGO Rugby Ball. The strength of the differential cross section exceeds what can be described by models of coherent photoproduction and instead supports the three isoscalar dibaryon candidates reported by the ELPH collaboration at 2.38, 2.47 and 2.63 GeV/c2. A low mass enhancement in the invariant mass is also observed at the ⁎ centre-of-mass energy which is consistent with the ABC effect. At higher centre-of-mass energies, a narrow peak in the invariant mass at 2114 MeV/c2 with a width of 20 MeV/c2 supports a sequential two-dibaryon decay mechanism

    Photoproduction of K+ Δ(1405) → K+ π0 Σ0 extending to forward angles and low momentum transfer

    Get PDF
    K+ Lambda (1405) photoproduction has been studied at the BGOOD experiment via the all neutral decay, Lambda(1405)-> Sigma0 Pi0. The unique BGOOD experimental setup allows both the cross section and invariant mass Lamba(1405) distribution (line shape) to be measured over a broad K+ polar angle range, extending to extreme forward K+ angles unattainable at previous experiments. Evidence is provided for the role of a triangle singularity driven by the N*(2030)⁎ resonance, which appears to contribute significantly to K+Lambda(1405) photoproduction. This is observed in the integrated cross section which was determined with unprecedented energy resolution and supported by the angular distributions. The measured line shape is also in agreement with the previous results of CLAS and ANKE, and is consistent with two poles derived in χPT based models

    Measurement of the γ n → K0 0 differential cross section over the K∗ threshold

    Get PDF
    The differential cross section for the quasi-free photoproduction reaction gamma(n)-> K-0 Sigma(0) was measured at BGOOD at ELSA from threshold to a centre-of-mass energy of 2400 MeV. Close to threshold the results are consistent with existing data and are in agreement with partial wave analysis solutions over the full measured energy range, with a large coupling to the Delta(1900)1/2(-) evident. This is the first dataset covering the K* threshold region, where there are model predictions of dynamically generated vector meson-baryon resonance contributions

    Observation of a cusp-like structure in the γp → K+Σ0 cross section at forward angles and low momentum transfer

    Get PDF
    The gamma+p->K+ + Sigma0 differential cross section at extremely forward angles was measured at the BGOOD experiment. A three-quarter drop in strength over a narrow range in energy and a strong dependence on the polar angle of the in the centre-of-mass of the reaction is observed at a centre-of-mass energy of 1900 MeV. Residing close to multiple open and hidden strangeness thresholds, the structure appears consistent with meson-baryon threshold effects which may contribute to the reaction mechanism
    corecore