15 research outputs found

    Techno-economic evaluation of microalgae harvesting and dewatering systems

    No full text
    Microalgal biomass is processed into products by two main process steps: 1) harvesting and dewatering; and 2) extraction, fractionation and conversion. The performance of unit operations for harvesting and dewatering is often expressed in qualitative terms, like “high energy consumption” and “low in operational cost”. Moreover, equipment is analysed as stand-alone unit operations, which do not interact in a chain of operations. This work concerns a quantitative techno-economic analysis of different large-scale harvesting and dewatering systems with focus on processing cost, energy consumption and resource recovery. Harvesting and dewatering are considered both as a single operation and as combinations of sequential operations. The economic evaluation shows that operational costs and energy consumption are in the range 0.5–2 ₏·kg− 1 algae and 0.2–5 kWh·kg− 1 of algae, respectively, for dilute solutions from open cultivation systems. Harvesting and dewatering of the dilute systems with flocculation results in the lowest energy requirement. However, due to required chemicals and loss of flocculants, these systems end at the same cost level as mechanical harvesting systems. For closed cultivation systems the operational costs decrease to 0.1–0.6 ₏·kg− 1 algae and the energy consumption to 0.1–0.7 kWh·kg− 1 algae. For all harvesting and dewatering systems, labour has a significant contribution to the total costs. The total costs can be reduced by a high level of automation, despite the higher associated investment costs. The analysis shows that a single step operation can be satisfactory if the operation reaches high biomass concentrations. Two-step operations, like pressure filtration followed by spiral plate technology or centrifugation, are attractive from an economic point of view, just as the operation chain of flocculation followed by membrane filtration and a finishing step with spiral plate technology or centrifugation

    A model-based combinatorial optimisation approach for energy-efficient processing of microalgae

    No full text
    The analyses of algae biorefinery performance are commonly based on fixed performance data for each processing step. In this work, we demonstrate a model-based combinatorial approach to derive the design-specific upstream energy consumption and biodiesel yield in the production of biodiesel from microalgae. Process models based on mass and energy balances and conversion relationships are presented for several possible process units in the algae processing train. They allow incorporating the effects of throughput capacity and process conditions, which is not possible in the data-based approach. Therefore, the effect of choices in the design on the overall performance can be quantified. The process models are organised in a superstructure to evaluate all combinations of routings. First, this is done for selected fixed design conditions, which is followed by optimisation of the process conditions for each route by maximising the net energy ratio (NER), based on upstream energy consumption and biodiesel yield. A scenario based on current energy production and state-of-the art techniques for algae processing is considered. The optimised process conditions yield NER values which are up to about 30% higher than those for fixed process conditions. In addition, the approach allows a quantitative bottleneck analysis for each process route. The model-based approach proves to be a versatile tool to guide the design of efficient microalgae processing systems
    corecore