9,457 research outputs found

    Orbital magnetism in axially deformed sodium clusters: From scissors mode to dia-para magnetic anisotropy

    Get PDF
    Low-energy orbital magnetic dipole excitations, known as scissors mode (SM), are studied in alkali metal clusters. Subsequent dynamic and static effects are explored. The treatment is based on a self-consistent microscopic approach using the jellium approximation for the ionic background and the Kohn-Sham mean field for the electrons. The microscopic origin of SM and its main features (structure of the mode in light and medium clusters, separation into low- and high-energy plasmons, coupling high-energy M1 scissors and E2 quadrupole plasmons, contributions of shape isomers, etc) are discussed. The scissors M1 strength acquires large values with increasing cluster size. The mode is responsible for the van Vleck paramagnetism of spin-saturated clusters. Quantum shell effects induce a fragile interplay between Langevin diamagnetism and van Vleck paramagnetism and lead to a remarkable dia-para anisotropy in magnetic susceptibility of particular light clusters. Finally, several routes for observing the SM experimentally are discussed.Comment: 21 pages, 7 figure

    Transition Temperature for Weakly Interacting Homogeneous Bose Gases

    Get PDF
    We apply the nonperturbative optimized linear δ expansion method to the O(N) scalar field model in three dimensions to determine the transition temperature of a dilute homogeneous Bose gas. Our results show that the shift of the transition temperature ΔTc/Tc of the interacting model, compared with the ideal-gas transition temperature, really behaves as γan1/3 where a is the s-wave scattering length and n is the number density. For N=2 our calculations yield the value γ=3.059
    • …
    corecore