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Transition temperature for weakly interacting homogeneous Bose gases

Frederico F. de Souza Cruz* and Marcus B. Pinto†

Departamento de Fı´sica, Universidade Federal de Santa Catarina, 88040-900 Floriano´polis, SC, Brazil

Rudnei O. Ramos‡

Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755-3528
~Received 10 July 2000; revised manuscript received 3 April 2001; published 14 June 2001!

We apply the nonperturbative optimized lineard expansion method to theO(N) scalar field model in three
dimensions to determine the transition temperature of a dilute homogeneous Bose gas. Our results show that
the shift of the transition temperatureDTc /Tc of the interacting model, compared with the ideal-gas transition
temperature, really behaves asgan1/3 wherea is thes-wave scattering length andn is the number density. For
N52 our calculations yield the valueg53.059.

DOI: 10.1103/PhysRevB.64.014515 PACS number~s!: 03.75.Fi, 05.30.Jp, 11.10.Wx

I. INTRODUCTION

The experimental realization of the Bose-Einstein conden-
sation in dilute atomic gases has stimulated an enormous
number of theoretical studies in this field~for recent reviews
on the theory and experiments, see for instance, Refs. 1 and
2!. Most of this interest comes from the fact that in these
experiments a great deal of control can be achieved in almost
every parameter of the system. Thus, experiments in dilute
Bose gases provide a perfect ground to test numerous models
and ideas, such as, for example, those commonly used in
quantum field theory, applied to nonrelativistic systems. In
particular, a theoretical study that has attracted some atten-
tion very recently is the determination of the behavior of the
transition temperature in the presence of a repulsive interac-
tion. This nontrivial problem has been treated by different
methods with different results. Taking a dilute Bose gas,
with a repulsive interaction characterized by the scattering
length parametera, the dependence ona for the difference
between the critical temperature shift with and without inter-
action @DTc /Tc5(Tc2Tc

0)/Tc# is a highly controversial
point, with respect to the functional dependence ona or even
regarding the sign. An early Hartree-Fock calculation3 with a
nondelta interaction gave a negative sign forDTc . This same
sign was also obtained by Toyoda4 using a one-loop renor-
malization group and obtaining a functional dependence ona
as DTc /Tc5g(a3n)1/6, where n is the density. More re-
cently, Huang5 obtained the same dependence forDTc /Tc ,
but with a positive constantg. Grüter, Ceperley, and Laloe¨,6

Holzmann and Krauth,7 and Holzmann, Gru¨ter, and Laloe¨8

investigated the dependence ofDTc numerically using
Monte Carlo methods. They obtained, in the low-density
limit, a dependence of the typeDTc /Tc5g(a3n)1/3 but with
different values forg. More recently the Monte Carlo tech-
nique has been again applied to this problem by Prokof’ev
and Svistunov9 and Arnold and Moore.10 These authors, who
obtained g51.2960.05 and g51.3260.02, respectively,
claim that their results are more accurate than those obtained
in Refs. 6–8.

The reason for the multitude of results and methods stems
from the fact that at the transition temperature ordinary per-
turbation theory fails~due to infrared divergences! and we

must resort to nonperturbative methods. Recently various
nonperturbative methods have also been used to treat the
problem of the transition temperature in an analytical way.
For example, the authors in Ref. 11 perform a self-consistent
calculation obtainingDTc /Tc5gan1/3, with g.2.9. The
nonperturbative 1/N method has been also used to determine
the shift. Its leading-order contribution has been evaluated by
Baym, Blaizot, and Zinn-Justin12 who obtainedDTc /Tc

5gan1/3, with g.2.33 for N52. Considering the next-to-
leading-order term, Arnold and Toma´sik13 determined a cor-
rection to this large-N expansion, obtaining a value for
DTc /Tc that is;26% smaller.

The results obtained by Bijlsma and Stoof,14 who used
renormalization-group techniques, and Baymet al.11 were
compared with the temperature transition data in the Vycor-
4He system by Reppyet al.15 Those experiments seem to
give a somewhat larger value for the constantg, asg;5.15

This value is close tog.4.66, which is the one obtained in
Ref. 14. Nevertheless some authors argue that this system
would not exactly correspond to a dilute Bose gas of hard
spheres.13

In this paper we apply the nonperturbative lineard expan-
sion ~or optimized perturbation theory!16 ~for earlier refer-
ences see, e.g., Refs. 17–19! to an effective model for dilute
homogeneous Bose gases. This approximation has been
shown to be a powerful nonperturbative method and suffi-
ciently simple to use in very different applications, including
the study of nonperturbative high-temperature effects, as
shown very recently in the context of finite temperature
quantum field theory20 as well as finite chemical potential.21

The method also introduces an arbitrary mass parameter that
prevents infrared-divergence problems. Nonperturbative re-
sults are generated when one optimizes the theory with re-
spect to this mass parameter.

The paper is organized as follows. We present the method
in Sec. II illustrating with an application to the pure anhar-
monic oscillator, which has many similarities with the model
used here to describe dilute Bose gases. The interpolated
version of an effective model for weakly interacting homo-
geneous Bose gases is obtained in Sec. III. Section IV is
devoted to the perturbative evaluation of density-related
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quantities. In Sec. V we present our nonperturbative results
for the critical temperature shift comparing with results
available in the literature. The conclusions are presented in
Sec. VI.

II. THE LINEAR d EXPANSION

The optimized lineard expansion~LDE! is an alternative
nonperturbative approximation that has been successfully
used in a plethora of different problems in particle
theory,16,22–24 quantum mechanics,18,25,26 nuclear matter,27

and lattice field theory28 as well as for determining the equa-
tion of state for the Ising model.29 One advantage of this
method is that the selection and evaluation~including renor-
malization! of Feynman diagrams are done exactly as in per-
turbation theory using a very simple modified propagator
that depends on an arbitrary mass parameter. The results are
optimized with respect to this parameter at the end of the
calculation. The standard application of the LDE to a theory
described by some Lagrangian densityL starts with an inter-
polation defined by

Ld5~12d!L0~h!1dL5L0~h!1d@L2L0~h!#,
~2.1!

whereL0(h) is the Lagrangian density of a solvable theory
that can contain arbitrary mass parametersh. The Lagrang-
ian density Ld interpolates between the solvableL0(h)
~when d50) and the originalL ~when d51). To illustrate
how the method works let us consider the anharmonic oscil-
lator described by

L5
1

2
~]0f!22

1

2
m2f22

l

4
f4. ~2.2!

Following the interpolation prescription given by Eq.~2.1!
one may choose

L0~h!5
1

2
~]0f!22

1

2
m2f22

1

2
h2f2, ~2.3!

obtaining

Ld5
1

2
~]0f!22

1

2
V2f22d

l

4
f41

d

2
h2f2, ~2.4!

whereV25m21h2. The general way the method works be-
comes clear by looking at the Feynman rules generated by
Ld . First, the originalf4 vertex has its original Feynman
rule 2 i6l modified to2 i6dl. This minor modification is
just a reminder that one is really expanding in orders of the
artificial parameterd. Most importantly, let us look at the
modifications implied by the addition of the arbitrary qua-
dratic part. The original bare propagator,

S~k!5 i ~k22m21 i e!21, ~2.5!

becomes

S~k!5 i ~k22V21 i e!21

5
i

k22m21 i e F12
i

k22m21 i e
~2 ih2!G21

,

~2.6!

indicating that the term proportional toh2f2 contained inL0
is entering the theory in a nonperturbative way. On the other
hand, the piece proportional todh2f2 is only being treated
perturbatively as a quadratic vertex~of weight idh2). Since
only an infinite order calculation would be able to compen-
sate for the infinite number of (2 ih2) insertions contained
in Eq. ~2.6!, one always ends up with ah dependence in any
quantity calculated to finite order ind. Then, at the end of
the calculation one sets the dummy parameterd to unity ~the
value at which the original theory is retrieved! and fixesh
with the variational procedure known as the principle of
minimal sensitivity30 ~PMS!, which requires that a physical
quantityP calculatedperturbativelyin powers ofd be evalu-
ated at the point where it is less sensitive to variations of the
arbitrary h. That is, one optimizes the perturbative calcula-
tion by requiring

]P~h!

]h U
h̄

50. ~2.7!

This procedure givesh̄ as a function of the original param-
eters, including the couplings, and generates nonperturbative
results as shown in the numerous applications cited above.

As a warmup for our application to the Bose gas problem
we follow Bellet, Garcia, and Neveu,31 evaluating the
ground-state energy densityE and the vacuum expectation
value^f2& for the anharmonic oscillator. Other applications
to this problem can be found in Refs. 18, 25, and 26.

By taking m50 in Eq. ~2.2! one obtains the Lagrangian
density for the pure anharmonic oscillator~PAO!, which can-
not be treated by ordinary perturbation theory. The exact
result

E exact5l1/3 0.420 804 974 478••• ~2.8!

has been obtained by Bender, Olaussen, and Wang,32 while
Banerjeeet al.33 have obtained the exact result for^f2&,

^f2&exact5l21/3 0.456 119 955 748•••. ~2.9!

In quantum field theory, the ground-state energy density is
represented by vacuum-to-vacuum diagrams. The relevant
contributions toO(d2) are31
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E (2)~h!52
i

2E2`

1` dp

2p
ln@p22V2#2d

i

2E2`

1` dp

2p

h2

p22V2
2dl

3

4 S E
2`

1` dp

2p

1

p22V2D 2

1d2
i

4E2`

1` dp

2p F h2

p22V2G 2

1d2l
3

2E2`

1` dp

2p

1

p22V2E2`

1` dp

2p

h2

~p22V2!2
2d2l2

9

4 S E
2`

1` dp

2p

1

p22V2D 2E
2`

1` dp

2p

1

~p22V2!2

2d2l2
3

4E2`

1` dp

2pE2`

1` dq

2pE2`

1` dl

2p F 1

~p22V2!~q22V2!~ l 22V2!

1

~p1q1 l !22V2G1O~d3!. ~2.10!

Note that the second, fourth, and fifth contributions are due
to the extra quadratic vertex, while all the others would also
appear in an ordinary perturbative expansion toO(l2). Set-
ting m50 ~PAO!, evaluating the integrals, and eliminating
the divergentO(d0) term, one obtains

E (2)~h!5E (1)~h!1d2
3l

16h2
2d2

21l2

128h5
, ~2.11!

where

E (1)~h!5d
1

4
h1d

3l

16h2
. ~2.12!

Good numerical results appear already at first order where
the application of the PMS toE (1)(h) yields E (1)(h̄)
5l1/30.4290 ath̄5(l 1.5)1/3. To second order the authors
in Ref. 31 obtainE (2)(h̄)5l1/30.4210 and then carry on
improving this result to show convergence. The interested
reader is referred to Ref. 31 for details concerning the opti-
mization procedure~selection of roots, etc!. Other proofs of
convergence are given in Refs. 25 and 26.

Bellet, Garcia, and Neveu also investigate the vacuum
expectation valuêf2& and we discuss their results here be-
cause this physical quantity is particularly important for our
application to bosonic condensates. The perturbative expan-
sion for ^f2& can be obtained in different ways using stan-
dard quantum-field-theory methods. The authors in Ref. 31
prefer to do it from the perturbative expansion forE (d) re-
calling that

^f2& (d)52
]

]V2
E (d). ~2.13!

Going to second order ind they optimize this quantity in two
different ways. First, by applying the PMS condition directly
to ^f2& (2) they obtain^f2& (2)5l21/30.455 758. Next, they
use the optimum values obtained by extremizingE (2) and
getting ^f2& (2)5l21/30.454 246, showing that both ap-
proaches lead to results with the same order of accuracy.

Still in the context of the anharmonic oscillator, Jones,
Parkin, and Winder in Ref. 34 have shown that the lineard
expansion applied to the calculation of dynamical evolution
of ^f2&, where the PMS is applied directly to this quantity,
tracks the exact solution longer than any previous approxi-

mate methods used to study the same quantity, like Hartree-
Fock or ordinary perturbation theory. This result also rein-
forces the correctness of our procedure of optimizing the
density in this particular application to Bose condensates.

Before applying thed expansion to the Bose-Einstein
condensation problem let us clarify a few points regarding
the method. First, one could object to the fact thatd is for-
mally treated as small during the actual calculation and fi-
nally set to unity at the end. However, we recall that the only
role attributed to this dummy parameter is to label the orders
so that one can keep track of the extra diagrams that arise
from the quadratic vertexdh2f2.

Finally, one could ask how the LDE relates to other non-
perturbative analytical methods such as the 1/N expansion.
To see that, let us consider the same model discussed above
for the case where the dynamical variables are a set ofN
scalar fieldsfa(a51, . . . ,N). Proceeding as before thed
expansion would give the following result forE at O(d),

E (1)~h!5dN
1

4
h1d

N~N12!

3

3l

16h2
. ~2.14!

The application of the PMS to this quantity gives

E (1)~ h̄ !5F ~N12!

3
lG1/3

0.4290, ~2.15!

at

h̄5@1.5~N12!l#1/3. ~2.16!

Higher-order contributions bring more factors ofN ~more
loops! making the calculation meaningless ifN is very large.
However, this particular limit can also be properly handled
by the LDE provided one definesg5Nl declaring that the
large-N limit will be studied with fixedg.35 Usingg5Nl in
Eq. ~2.16! one sees that, in the large-N limit, h̄ is of order
N0, in terms of which Eq.~2.14! gives thatE (1)(h̄) is of
orderN, exactly as the leading 1/N result, as one can easily
check.

An important result, proven in the context of the effective
potential,36 shows that the LDE exactly reproduces large-N
results in any order ind provided that one stays within the
large-N limit. Moreover, the LDE is sensitive to small-N
effects since these terms may appear in terms such asN(N
12)l in Eq. ~2.14!. In fact, Ref. 23 shows how small-N
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effects are effectively taken into account by the LDE in the
context of the 111 dimensional Gross-Neveu model at finite
temperatures where the results nicely converge, order by or-
der, towards the exact result set by Landau’s theorem.

The formal relationship in between the LDE and 1/N is
investigated in detail in Refs. 23 and 36. Here, we shall
concern ourselves with the finite-N case only.

III. THE INTERPOLATED MODEL FOR DILUTE
HOMOGENEOUS BOSE GASES

Let us start by considering the typical model that de-
scribes a gas of interacting boson particles, described by a
complex scalar fieldc with Lagrangian density given by

L5c* ~x,t !S i
d

dt
1

1

2m
¹2Dc~x,t !1mc* ~x,t !c~x,t !

2
1

2E d3x8c~x,t !c* ~x,t !V~x2x8!c~x8,t !c* ~x8,t !,

~3.1!

wherem is the chemical potential. Let us take the interatomic
interaction potential as being the one for a hard-sphere gas,

V~x2x8!5
4pa

m
d~x2x8!, ~3.2!

wherea is thes-wave scattering length.
We want to determine the deviation of the critical tem-

peratureTc , of the interacting model, in relation to the criti-
cal temperature for Bose-Einstein condensation for a free gas
T0, given by the usual expression

T05
2p

m S n

z~3/2! D
2/3

, ~3.3!

wheren is the number density of the boson gas andz(3/2)
.2.612.

As discussed in Refs. 12 and 13, close to the critical point
we can reduce Eq.~3.1! to an effective three-dimensional
model for the zero Matsubara frequency modes~the static
modes! of the fieldsc, given by the functional integration of
the nonzero modes, obtaining an effective action defined by
(b215T)

E
0

b

dtE d3xLEucl@c~x,t!,c* ~x,t!#

→bE d3xLeff@c~x!,c* ~x!#, ~3.4!

where LEucl is the Lagrangian density in Euclidean space
(t5 i t , as usual! and with the effective action for the static
modes *d3xLeff being equivalent to a three-dimensional
O(2) field theory, defined by the action

S5E d3xF1

2
u¹fu21

1

2
rf21

u

4!
~f2!2G , ~3.5!

wheref5(f1 ,f2) is related to the original real components
of c by c15(mT)1/2f1 andc25(mT)1/2f2, while r andu
are given by

r 522mm, u548pamT. ~3.6!

By considering the usual interpolation prescription given by
Eq. ~2.1! we write

S→Sd5dS1~12d!S0 , ~3.7!

whereS0 is quadratically~exactly solvable! in the fields.
One can choose

S05
1

2
@ u¹fu21Rf2#, ~3.8!

whereR5r 1h2, obtaining

Sd5E d3xF1

2
u¹fu21

1

2
Rf22

d

2
h2f21

du

4!
~f2!2G ,

~3.9!

with h being an arbitrary parameter with mass dimensions
that is fixed at a finite order ind by the PMS condition, Eq.
~2.7!. Here we will optimize the physical quantity repre-
sented bŷ f2&, which, as we shall see, is directly related to
the critical temperature shiftDTc /Tc . Let us first define the
density for the interacting case

n5mT^f2&u , ~3.10!

where, for theO(N) symmetric model,̂f2&u is expressed in
terms of the three-dimensional dressed Green’s function
Gd(p) as

^f2&u5(
i 51

N

^f i
2&u5NE d3p

~2p!3
Gd~p!, ~3.11!

where

Gd~p!5@p21R2dh21Sd~p!#21, ~3.12!

and Sd(p) is the f field renormalized self-energy that will
be evaluated perturbatively in powers ofd.

At the critical temperature the original system must ex-
hibit infinite correlation length, which means that atTc and
d51 ~the original theory!, Gd

21(0)50. Then, one gets the
relation

r 52Sd~0!, ~3.13!

which is just the form of the Hugenholtz-Pines theorem. We
must stress that the choice~3.9! respects the Hugenholtz-
Pines theorem at all orders ind.

Now, by using the relation~3.13! in Eq. ~3.11!, one can
write
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^f2&u5E d3p

~2p!3

N

p21h2

3F11
~2dh2!1Sd~p!2Sd~0!

p21h2 G21

. ~3.14!

IV. EVALUATION OF Šf2
‹ TO O„d2

…

Expanding the above expression in powers ofd to O(d),
one sees that the only contribution to the self-energy is a
momentum-independent tadpole diagram that is cancelled by
the condition onr. Then, to orderd, we obtain

^f2&u5E d3p

~2p!3

N

p21h2 F11
dh2

p21h2G , ~4.1!

which is u independent and cannot furnish nonperturbative
results. At next order ind the only momentum-dependent
contribution to the self-energy comes from the two-loop set-
ting sun diagram, which is of orderd2. Then, we obtain

^f2&u5E d3p

~2p!3

N

p21h2 F11
dh2

p21h2
1

d2h4

~p21h2!2

2
Sss~p!2Sss~0!

p21h2 G , ~4.2!

whereSss(p) represents the setting sun contribution to the
self-energy,

Sss~p!52
~N12!u2d2

18 E d3k

~2p!3

d3q

~2p!3

3
1

~k21h2!~q21h2!@~p1q1k!21h2#
.

~4.3!

Note thath acts naturally as an infrared cutoff so we do
not have to worry about these type of divergences. The first
three terms in Eq.~4.2! represent one-loop diagrams with
different powers ofdh2 insertions. We regularize all dia-
grams with dimensional regularization in arbitrary dimen-
sionsd5322e and carry the renormalization with theMS
scheme. So the momentum integrals are replaced by

E d3p

~2p!3
→E

p
[S egEM2

4p D eE ddp

~2p!d
,

whereM is an arbitrary mass scale andgE.0.5772 is the
Euler-Mascheroni constant. One then obtains theO(d2) one-
loop contributions

2
Nh

4p
1

d

2

Nh

4p
1

d2

8

Nh

4p
1O~e!, ~4.4!

where we have used the expression37

E
p

1

p21h2
52

h

4p F112eS ln
M

2h
11D1O~e2!G ~4.5!

and its derivatives with respect toh2 to determine Eq.~4.4!.
The setting sun self-energy diagram, with zero external mo-
mentum, is given by~see, for example, Ref. 37!

Sss~p!up5052
~N12!

18

u2d2

~8p!2

3F1

e
14 ln

M

2h
1214 ln

2

3
1O~e!G ,

~4.6!

from which one gets

E
p

N

~p21h2!2
Sss~0!

52
N~N12!

9

d2u2

~8p!3h

3F 1

2e
13 lnS M

2h D1112 ln
2

3
1O~e!G . ~4.7!

The momentum-dependent setting sun contribution can be
written as

E
p

N

~p21h2!2
Sss~p!5

N~N12!u2d2

72

d

dh2
I , ~4.8!

where37

I bask5E
pkq

1

~p21h2!~k21h2!~q21h2!@~p1q1k!21h2#

52
h

~4p!3 F1

e
16 ln

M

2h
1824 ln 21O~e!G . ~4.9!

We then obtain for Eq.~4.8!

E
p

N

~p21h2!2
Sss~p!

52
N~N12!

9

d2u2

~8p!3h

3F 1

2e
13 lnS M

2h D1122 ln 21O~e!G . ~4.10!

V. THE TEMPERATURE SHIFT IN THE OPTIMIZED
LINEAR d EXPANSION

Using Eqs.~4.4!, ~4.7!, and~4.10! in Eq. ~4.2!, we deter-
mine ^f2&u at orderd2. Note that all divergences ine cancel
and that at orderd2, ^f2&u is a finite quantity. One can now
set d51 and optimizê f2&u with the PMS. After that one
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setsu50 in the optimized̂ f2&u, obtaining thed expansion
result for the critical temperature shift11–13

DTc

Tc
.2

2mT0

3n
D^f2&52

2mT0

3n
@^f2&u2^f2&0#,

~5.1!

whereT0 is given by Eq.~3.3!. At this stage it should be
clear that it is preferable to optimizêf2&u rather than
D^f2& because the latter quantity is lessh dependent. One
then obtains

h̄56F 6~N12!u2 ln
4

3

~36p!2
G 1/2

, ~5.2!

which leads to

^f2&u57
uN

192p2 F6~N12!ln
4

3G1/2

. ~5.3!

In principle one could not single out one solution in favor of
the other and we must be careful in choosing the appropriate
one. Equation~5.3! implies that the optimized̂f2&0 van-
ishes no matter which sign is chosen. Now^f2&0 represents
the density~divided by a factormT) in the absence of inter-
actions, which turns out to be zero for the present effective
theory. However, this is of no concern here since one is
really interested in the difference^f2&u2^f2&0, represented
by DTc . Also, one knows that the density of the interacting
gas (̂ f2&u) should be smaller than that of the noninteracting
gas, which means that here one should have^f2&u,0,
which is achieved by selecting the positiveh̄. Using this in
Eq. ~5.1!, we then get our final result

DTc

Tc
.

2p

z~3/2!4/3

N

3 F6~N12!ln
4

3G1/2

an1/3. ~5.4!

SettingN52 in the above expression yields

DTc

Tc
.3.059an1/3. ~5.5!

Using the 1/N expansion, Baym, Blaizot, and Zinn-Justin12

obtainedDTc /Tc.2.33an1/3 in the leading order while Ar-
nold and Toma´sik13 obtainedDTc /Tc;1.71an1/3 consider-
ing the next to leading order in the same approximation. Our
result is closer toDTc /Tc.2.9an1/3 obtained in Ref. 11
with a method that sums setting sun contributions in a self-
consistent way. These analytical results, including ours, are
compared with the recent and earlier Monte Carlo estimates
in Ref. 10. Finally let us remark that the result given by Eq.
~5.4! is valid only for finite N. This can be understood as
follows. In a large-N study one would have to consideruN
as fixed~meaning thatu;N21) and so, by takingN large in
Eq. ~4.2!, one sees that the setting sun diagrams ofO(N0)

should be neglected since there are one-loop diagrams of
O(N). However, these terms are linear inh as shown by
their contribution, Eq.~4.4!, and so the PMS does not give
any meaningful result in this limit for the present model as
opposed to the anharmonic oscillator case. The difference
arises mainly because momentum-independent tadpole dia-
grams of O(N) are now being subtracted due to the
Hugenholz-Pines theorem while the one-loop momentum-
independent diagrams survive. Then, the PMS generates
nontrivial results only by mixing diagrams that would belong
to different orders in a standard large-N application. To have
a rough idea about what is being summed one can consider
the second and fourth terms in Eq.~4.2! together with their
integrated forms. Then it is clear that, apart from a numerical
factor, the optimizedh̄2 given by Eq.~5.2! behaves as the
optimized Sss(p)2Sss(0). One canthen see that, to this
order, the optimization dresses the simple propagator (p2

1h2)21, present in Eq.~4.2!, with setting sun features giv-
ing nonperturbative results that are compatible with the ones
obtained in the self-consistent summation of Ref. 11.

VI. CONCLUSIONS

We conclude that our results for the critical temperature
indeed reproduce the expected behavior obtained from other
studies, which isTc.T0(11gan1/3). We obtain an analyti-
cal expression for the numerical coefficientg in terms of
finite values ofN. Our final numerical results are similar to
the ones obtained with the self-consistent summation,11 pre-
dicting that the numerical value ofg is greater than the ones
predicted by the 1/N expansion at leading order12 and next-
to-leading order.13 All these analytical results, including
ours, have been compared with earlier and recent Monte
Carlo results in Ref. 10. It should be clear that the present
calculation has been carried out to an order where only one
two-loop diagram contributes and so the quality of the ap-
proximation is hard to be inferred from a quantitative point
of view. In fact, the purpose of the present application was
just to introduce the method as a possible alternative to study
the condensation problem. Nevertheless, one should remark
that although carried out in a completely different fashion,
our simple application seems to capture much of the features
of the self-consistent calculation performed by Baymet al.11

Also, our work does not exhaust the different ways in
which this method can be implemented within this particular
problem and the possibility of further improvements is still
wide open. This could be achieved by investigating alterna-
tive forms of implementing the method within this model,
including an investigation of the best quantity to be opti-
mized, and/or by pushing the calculation to higher orders. It
is possible that with more refinements this method will gen-
erate even better numerical results with the advantage, as
shown in the paper, of being considerably simpler and easier
to use than all previous methods used to determine the be-
havior of Tc .

Due to its simplicity and easy implementation, we believe
that the optimizedd expansion can also be useful in other
aspects of the theoretical study and understanding of the
Bose condensation of dilute atomic gases, such as determin-
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ing the correct corrections to the energy spectrum or in ap-
plications related to the recent studies of the dynamics of the
Bose-Einstein condensate formation.38 The results of Ref. 34
are particularly motivating in the context of applying the
optimized lineard expansion also to dynamical problems.
Finally, we point out that Bedingham and Evans39 have suc-
cessfully extended the present work to the ultrarelativistic
case.
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