61 research outputs found

    Ring formation and hydration effects in electron attachment to misonidazole

    Get PDF
    This research was funded by CZECH SCIENCE FOUNDATION grant number 19-01159S; Czech Ministry of Education Youth and Sports via OP RDE Grant no. CZ.02.2.69/0.0/16_027/0008355; S.D. acknowledges funding from the FWF, Vienna (P30332).We study the reactivity of misonidazole with low-energy electrons in a water environment combining experiment and theoretical modelling. The environment is modelled by sequential hydration of misonidazole clusters in vacuum. The well-defined experimental conditions enable computational modeling of the observed reactions. While the NO- 2 dissociative electron attachment channel is suppressed, as also observed previously for other molecules, the OH- channel remains open. Such behavior is enabled by the high hydration energy of OH- and ring formation in the neutral radical co-fragment. These observations help to understand the mechanism of bio-reductive drug action. Electron-induced formation of covalent bonds is then important not only for biological processes but may find applications also in technology.publishersversionpublishe

    Svestka's Research: Then and Now

    Full text link
    Zdenek Svestka's research work influenced many fields of solar physics, especially in the area of flare research. In this article I take five of the areas that particularly interested him and assess them in a "then and now" style. His insights in each case were quite sound, although of course in the modern era we have learned things that he could not readily have envisioned. His own views about his research life have been published recently in this journal, to which he contributed so much, and his memoir contains much additional scientific and personal information (Svestka, 2010).Comment: Invited review for "Solar and Stellar Flares," a conference in honour of Prof. Zden\v{e}k \v{S}vestka, Prague, June 23-27, 2014. This is a contribution to a Topical Issue in Solar Physics, based on the presentations at this meeting (Editors Lyndsay Fletcher and Petr Heinzel

    Survey on solar X-ray flares and associated coherent radio emissions

    Full text link
    The radio emission during 201 X-ray selected solar flares was surveyed from 100 MHz to 4 GHz with the Phoenix-2 spectrometer of ETH Zurich. The selection includes all RHESSI flares larger than C5.0 jointly observed from launch until June 30, 2003. Detailed association rates of radio emission during X-ray flares are reported. In the decimeter wavelength range, type III bursts and the genuinely decimetric emissions (pulsations, continua, and narrowband spikes) were found equally frequently. Both occur predominantly in the peak phase of hard X-ray (HXR) emission, but are less in tune with HXRs than the high-frequency continuum exceeding 4 GHz, attributed to gyrosynchrotron radiation. In 10% of the HXR flares, an intense radiation of the above genuine decimetric types followed in the decay phase or later. Classic meter-wave type III bursts are associated in 33% of all HXR flares, but only in 4% they are the exclusive radio emission. Noise storms were the only radio emission in 5% of the HXR flares, some of them with extended duration. Despite the spatial association (same active region), the noise storm variations are found to be only loosely correlated in time with the X-ray flux. In a surprising 17% of the HXR flares, no coherent radio emission was found in the extremely broad band surveyed. The association but loose correlation between HXR and coherent radio emission is interpreted by multiple reconnection sites connected by common field lines.Comment: Solar Physics, in pres

    Temporal Correlation of Hard X-rays and Meter/Decimeter Radio Structures in Solar Flares

    Full text link
    We investigate the relative timing between hard X-ray (HXR) peaks and structures in metric and decimetric radio emissions of solar flares using data from the RHESSI and Phoenix-2 instruments. The radio events under consideration are predominantly classified as type III bursts, decimetric pulsations and patches. The RHESSI data are demodulated using special techniques appropriate for a Phoenix-2 temporal resolution of 0.1s. The absolute timing accuracy of the two instruments is found to be about 170 ms, and much better on the average. It is found that type III radio groups often coincide with enhanced HXR emission, but only a relatively small fraction (\sim 20%) of the groups show close correlation on time scales << 1s. If structures correlate, the HXRs precede the type III emissions in a majority of cases, and by 0.69±\pm0.19 s on the average. Reversed drift type III bursts are also delayed, but high-frequency and harmonic emission is retarded less. The decimetric pulsations and patches (DCIM) have a larger scatter of delays, but do not have a statistically significant sign or an average different from zero. The time delay does not show a center-to-limb variation excluding simple propagation effects. The delay by scattering near the source region is suggested to be the most efficient process on the average for delaying type III radio emission

    Multi-wavelength analysis of high energy electrons in solar flares: a case study of August 20, 2002 flare

    Full text link
    A multi-wavelength spatial and temporal analysis of solar high energy electrons is conducted using the August 20, 2002 flare of an unusually flat (gamma=1.8) hard X-ray spectrum. The flare is studied using RHESSI, Halpha, radio, TRACE, and MDI observations with advanced methods and techniques never previously applied in the solar flare context. A new method to account for X-ray Compton backscattering in the photosphere (photospheric albedo) has been used to deduce the primary X-ray flare spectra. The mean electron flux distribution has been analysed using both forward fitting and model independent inversion methods of spectral analysis. We show that the contribution of the photospheric albedo to the photon spectrum modifies the calculated mean electron flux distribution, mainly at energies below 100 keV. The positions of the Halpha emission and hard X-ray sources with respect to the current-free extrapolation of the MDI photospheric magnetic field and the characteristics of the radio emission provide evidence of the closed geometry of the magnetic field structure and the flare process in low altitude magnetic loops. In agreement with the predictions of some solar flare models, the hard X-ray sources are located on the external edges of the Halpha emission and show chromospheric plasma heated by the non-thermal electrons. The fast changes of Halpha intensities are located not only inside the hard X-ray sources, as expected if they are the signatures of the chromospheric response to the electron bombardment, but also away from them.Comment: 26 pages, 9 figures, accepted to Solar Physic

    An Observational Overview of Solar Flares

    Full text link
    We present an overview of solar flares and associated phenomena, drawing upon a wide range of observational data primarily from the RHESSI era. Following an introductory discussion and overview of the status of observational capabilities, the article is split into topical sections which deal with different areas of flare phenomena (footpoints and ribbons, coronal sources, relationship to coronal mass ejections) and their interconnections. We also discuss flare soft X-ray spectroscopy and the energetics of the process. The emphasis is to describe the observations from multiple points of view, while bearing in mind the models that link them to each other and to theory. The present theoretical and observational understanding of solar flares is far from complete, so we conclude with a brief discussion of models, and a list of missing but important observations.Comment: This is an article for a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011

    Global Properties of Solar Flares

    Full text link

    High-frequency slowly drifting structures in solar flares

    No full text
    Radio emission of four solar flares with high-frequency slowly drifting structures is presented. Three sub-classes of these structures were recognized. It is shown that the April 15, 2001 X14.4 flare started with the slowly drifting structure associated with a plasmoid ejection observed by TRACE in the 171 Å   line. The August 18, 1998 event presents an example of the drifting pulsation structure (DPS) which is well limited in frequency extent at both sides. A further example of the DPS, but followed by clouds of the narrowband dm-spikes, was observed during the November 23, 2001 flare. Finally, in the case of the April 12, 2001 flare, the drifting pulsation-continuum structure was recorded at the same time as the metric type II radio burst, i.e. in different frequency ranges. The slowly drifting structures were analyzed and in two cases their relation to hard X-ray emission was studied. Possible underlying physical processes are discussed assuming the plasmoid ejection model of eruptive solar flares

    High-frequency slowly drifting structures and X-ray sources observed by RHESSI

    No full text
    Three solar flares (April 4, 2002, May 17, 2002, and August 30, 2002) with the 0.4-2.0 GHz slowly drifting structures were selected and analyzed together with RHESSI X-ray observations. Two events (April 4, 2002 and May 17, 2002) were observed above and one event (August 30, 2002) close to the solar limb. While in April 4, 2002 and August 30, 2002 the radio drifting structures with relatively high frequency drifts (-32– -25 MHz s-1) were recorded at times of the start of a motion of the X-ray flare source, in May 17, 2002 event a splitting of the X-ray source into two sources was observed before observation of the 0.8-1.8 GHz radio structure drifting with very slow frequency drift (-0.4 MHz s-1). The X-ray source of the May 17, 2002 was much softer (100 keV). Velocities of the X-ray sources in the image plane were estimated as 12 km s-1 for April 4, 2002 and 10 km s-1 for August 30, 2002. Analyzing GOES data and X-ray RHESSI spectra of the May 17, 2002 flare the plasma thermal and non-thermal electron densities in the X-ray sources were determined. For two cases (April 4, 2002 and May 17, 2002) it was found that the plasma density in the coronal X-ray source is higher than maximum one derived from the radio drifting structure. The cross-correlation of the radio drifting structure and hard X-ray flux for the August 30, 2002 event reveals that the hard X-ray emission is delayed 0.5-0.7 s after the radio and it is partly correlated with an enhanced background of the drifting structure. All these results are discussed and interpreted considering the flare model with the plasmoid ejection
    corecore