673 research outputs found

    Galactic arm structure and gamma ray astronomy

    Get PDF
    Unexpectedly high energy gamma radiation over a broad region of the galactic plane in the general direction of the galactic center was observed. A model is proposed wherein the galactic cosmic rays are preferentially located in the high matter density regions of galactic arm segments, as a result of the weight of the matter in these arms tieing the magnetic fields and hence the cosmic rays to these regions. The presently observed galactic gamma ray longitudinal distribution can be explained with the current estimate of the average galactic matter density: if the average arm to interarm matter ratio is five to one for the major arm segments toward the galactic center from the sun; and if the cosmic ray density normalized to its local value is assumed to be directly proportional to the matter density

    High energy galactic gamma radiation from cosmic rays concentrated in spiral arms

    Get PDF
    A model for the emission of high energy ( 100 MeV) gamma rays from the galactic disk was developed and compared to recent SAS-2 observations. In the calculation, it is assumed that (1) the high energy galactic gamma rays result primarily from the interaction of cosmic rays with galactic matter; (2) on the basis of theoretical and experimental arguments the cosmic ray density is proportional to the matter density on the scale of galactic arms; and (3) the matter in the galaxy, atomic and molecular, is distributed in a spiral pattern consistent with density wave theory and the experimental data on the matter distribution

    SAS-2 observations of the high energy gamma radiation from the Vela region

    Get PDF
    Data from a scan of the galactic plane by the SAS-B high energy gamma ray experiment in the region 250 deg smaller than 12 smaller than 290 deg show a statistically significant excess over the general radiation from the galactic plane for gamma radiation of energy larger than 100 MeV. If the enhanced gamma radiation results from interactions of cosmic rays with galactic matter, as the energy spectrum suggests, it seems reasonable to associate the enhancement with large scale galactic features, such as spiral arm segments in that direction, or with the region surrounding the Vela supernova remnant with which PSR 0833-45 is associated. If the excess is attributed to cosmic rays released from the supernova interacting with the interstellar matter in that region, than on the order of 3 x 10 to the 50th power ergs would have been released by that supernova in the form of cosmic rays

    SAS-2 observations of the galactic gamma radiation from the Vela region

    Get PDF
    Data from a scan of the galactic plane by the SAS-2 high energy gamma ray experiment in the region 250 deg l2 290 deg show a statistically-significant excess over the general radiation from the galactic plane for gamma radiation of energy 100 MeV in the region 260 deg l2 270 deg and -7.5 deg b2 0 deg. If the enhanced gamma radiation results from interactions of cosmic rays with galactic matter, as the energy spectrum suggests, it seems reasonable to associate the enhancement with large scale galactic features, such as spiral arm segments in that direction, or with the region surrounding the Vela supernova remnant, with which PSR 0833-45 is associated. If the excess is attributed to cosmic rays released from this supernova interacting with the interstellar matter in that region, then on the order of 3.10 to the 50th power ergs would be released by that supernova in the form of cosmic rays

    Thoracic ultrasound for pleural effusion in the intensive care unit: A narrative review from diagnosis to treatment

    Get PDF
    Pleural effusion (PLEFF), mostly caused by volume overload, congestive heart failure, and pleuropulmonary infection, is a common condition in critical care patients. Thoracic ultrasound (TUS) helps clinicians not only to visualize pleural effusion, but also to distinguish between the different types. Furthermore, TUS is essential during thoracentesis and chest tube drainage as it increases safety and decreases life-threatening complications. It is crucial not only during needle or tube drainage insertion, but also to monitor the volume of the drained PLEFF. Moreover, TUS can help diagnose co-existing lung diseases, often with a higher specificity and sensitivity than chest radiography and without the need for X-ray exposure. We review data regarding the diagnosis and management of pleural effusion, paying particular attention to the impact of ultrasound. Technical data concerning thoracentesis and chest tube drainage are also provided

    Shelf Life Extension and Nutritional Quality Preservation of Sour Cherries through High Pressure Processing

    Get PDF
    The present study assessed the effectiveness of high pressure processing (HPP) for the quality maintenance of pitted sour cherries, with special regard to microbial stabilization and the maintenance of color and of chemical–nutritional properties. The HPP treatment (600 MPa for 3 min at 4 °C) was effective at minimizing the initial microbial load, which remained at negligible levels throughout 5 months of refrigerated storage. The color and total phytochemical content of sour cherries were not influenced by the HPP treatment and were maintained at levels comparable with the fresh product for 3 months of refrigerated storage. For longer storage periods, the typical red color decreased, in agreement with the content of total anthocyanins, which showed a significant decrease (up to 65% after 5 months). The antioxidant activity, measured by the ABTS and DPPH assays, was not affected by the HPP treatment, but slightly reduced during refrigerated storage. The study suggests that HPP may be exploited to extend the shelf life, while maintaining the fresh-like features of sour cherries, thus offering an alternative option to current preservation techniques (based on freezing or heating) commonly applied to this product

    Gamma radiation from the Crab nebula above 35 MeV

    Get PDF
    Electromagnetic radiation from the Crab nebula were observed, showing that the Crab is unique among strong X-ray sources in that major component in the low energy range (1 to 10 KeV) shows little or no temporal variation. Observations of the Crab above 35 MeV were made with the high energy gamma ray telescope flown on SAS-2. The detector and technique are described in detail

    High energy gamma ray results from the second small astronomy satellite

    Get PDF
    A high energy (35 MeV) gamma ray telescope employing a thirty-two level magnetic core spark chamber system was flown on SAS 2. The high energy galactic gamma radiation is observed to dominate over the general diffuse radiation along the entire galactic plane, and when examined in detail, the longitudinal and latitudinal distribution seem generally correlated with galactic structural features, particularly with arm segments. The general high energy gamma radiation from the galactic plane, explained on the basis of its angular distribution and magnitude, probably results primarily from cosmic ray interactions with interstellar matter
    • …
    corecore