699 research outputs found

    Formation of Nanopillar Arrays in Ultrathin Viscous Films: The Critical Role of Thermocapillary Stresses

    Full text link
    Experiments by several groups during the past decade have shown that a molten polymer nanofilm subject to a large transverse thermal gradient undergoes spontaneous formation of periodic nanopillar arrays. The prevailing explanation is that coherent reflections of acoustic phonons within the film cause a periodic modulation of the radiation pressure which enhances pillar growth. By exploring a deformational instability of particular relevance to nanofilms, we demonstrate that thermocapillary forces play a crucial role in the formation process. Analytic and numerical predictions show good agreement with the pillar spacings obtained in experiment. Simulations of the interface equation further determine the rate of pillar growth of importance to technological applications.Comment: 5 pages, 4 figure

    Asymmetric nanofluidic grating detector for differential refractive index measurement and biosensing.

    No full text
    Measuring small changes in refractive index can provide both sensitive and contactless information on molecule concentration or process conditions for a wide range of applications. However, refractive index measurements are easily perturbed by non-specific background signals, such as temperature changes or non-specific binding. Here, we present an optofluidic device for measuring refractive index with direct background subtraction within a single measurement. The device is comprised of two interdigitated arrays of nanofluidic channels designed to form an optical grating. Optical path differences between the two sets of channels can be measured directly via an intensity ratio within the diffraction pattern that forms when the grating is illuminated by a collimated laser beam. Our results show that no calibration or biasing is required if the unit cell of the grating is designed with an appropriate built-in asymmetry. In proof-of-concept experiments we attained a noise level equivalent to ∼10(-5) refractive index units (30 Hz sampling rate, 4 min measurement interval). Furthermore, we show that the accumulation of biomolecules on the surface of the nanochannels can be measured in real-time. Because of its simplicity and robustness, we expect that this inherently differential measurement concept will find many applications in ultra-low volume analytical systems, biosensors, and portable devices

    The Alternative for Germany’s radicalization in historical-comparative perspective

    Get PDF
    This article chronicles the AfD’s rightward repositioning and compares it with the programmatic development of three postwar German parties on the ideological wings. By highlighting factors that tilt the balance of power away from moderate reformers towards hardliners, this comparative analysis sheds light on the conditions that lead a relatively successful party on the ideological wings, such as the AfD, to radicalize its programme. Four variables stand out: whether party hardliners take the blame for the recent election loss; whether they offer a convincing programmatic and strategic alternative to the reformers; whether changes in party composition strengthen hardliners; and whether external factors enhance their weight within the party. The essay concludes that the AfD’s radicalization was unusual, but not exceptional. It is however too early to conclude that the Federal Republic’s distinctive institutions and political culture no longer impose significant costs on parties that shift their programmes away from the centre

    Deterioration of concrete: application of stable istotopes

    Get PDF

    Methods comparison for detecting trends in herbicide monitoring time-series in streams

    Get PDF
    An inadvertent consequence of pesticide use is aquatic pesticide pollution, which has prompted the implementation of mitigation measures in many countries. Water quality monitoring programs are an important tool to evaluate the efficacy of these mitigation measures. However, large interannual variability of pesticide losses makes it challenging to detect significant improvements in water quality and to attribute these improvements to the application of specific mitigation measures. Thus, there is a gap in the literature that informs researchers and authorities regarding the number of years of aquatic pesticide monitoring or the effect size (e.g., loss reduction) that is required to detect significant trends in water quality. Our research addresses this issue by combining two exceptional empirical data sets with modelling to explore the relationships between the achieved pesticide reduction levels due to mitigation measures and the length of the observation period for establishing statistically significant trends. Our study includes both a large (Rhine at Basel, ∼36,300 km2) and small catchment (Eschibach, 1.2 km2), which represent spatial scales at either end of the spectrum that would be realistic for monitoring programs designed to assess water quality. Our results highlight several requirements in a monitoring program to allow for trend detection. Firstly, sufficient baseline monitoring is required before implementing mitigation measures. Secondly, the availability of pesticide use data helps account for the interannual variability and temporal trends, but such data are usually lacking. Finally, the timing and magnitude of hydrological events relative to pesticide application can obscure the observable effects of mitigation measures (especially in small catchments). Our results indicate that a strong reduction (i.e., 70–90 %) is needed to detect a change within 10 years of monitoring data. The trade-off in applying a more sensitive method for change detection is that it may be more prone to false-positives. Our results suggest that it is important to consider the trade-off between the sensitivity of trend detection and the risk of false positives when selecting an appropriate method and that applying more than one method can provide more confidence in trend detection

    Cross-Flow Filtration of Escherichia coli at a Nanofluidic Gap for Fast Immobilization and Antibiotic Susceptibility Testing

    Get PDF
    Infections with antimicrobial-resistant (AMR) bacteria are globally on the rise. In the future, multi-resistant infections will become one of the major problems in global health care. In order to enable reserve antibiotics to retain their effect as long as possible, broad-spectrum antibiotics must be used sparingly. This can be achieved by a rapid microfluidic phenotypic antibiotic susceptibility test, which provides the information needed for a targeted antibiotic therapy in less time than conventional tests. Such microfluidic tests must cope with a low bacteria concentration. On-chip filtering of the samples to accumulate bacteria can shorten the test time. By means of fluorescence microscopy, we examined a novel nanogap filtration principle to hold back Escherichia coli and to perform cultivation experiments with and without antibiotics present. Microfluidic chips based on the nanogap flow principle showed to be useful for the concentration and cultivation of E. coli. With a concentration of 106 cells/mL, a specific growth rate of 0.013 min−1 and a doubling time of 53 min were achieved. In the presence of an antibiotic, no growth was observed. The results prove that this principle can, in future, be used in fast and marker-free antimicrobial susceptibility testing (AST)

    Laser modulated optical reflectance of thin semiconductor films on glass

    Get PDF
    Semiconductor films, deposited by reactive magnetron sputtering on glass substrates have been analyzed with the help of laser-modulated optical reflectance. The results are discussed with respect to the thermal and charge carrier transport properties. Semiconductor properties have been identified both for micro-crystalline and amorphous film
    • …
    corecore