396 research outputs found

    Three-particle contributions to the renormalisation of B-meson light-cone distribution amplitudes

    Full text link
    We study light-cone distribution amplitudes of heavy-light systems, such as a B-meson. By an explicit computation, we determine how two-parton distribution amplitudes mix with three-parton ones at one loop: \phi_+ is shown to mix only into itself, whereas \phi_- mixes with the difference of three-parton distribution amplitudes \Psi_A-\Psi_V. We determine the corresponding anomalous dimension and we check the gauge independence of our result by considering a general covariant gauge. Finally, we comment on some implications of our result for phenomenological models of these distribution amplitudes.Comment: 21 pages, 5 figures, some comments and 2 references added, except for typesetting matches version published in JHE

    On the origin of the D0 like-sign dimuon charge asymmetry

    Full text link
    We reconsider the recent observation by the D0 experiment of a sizable like-sign dimuon charge asymmetry, highlighting that it could be affected by CP-violating New Physics contributions not only in Bd- and Bs-meson mixings, but also in semileptonic decays of b and c quarks producing muons. The D0, measurement could be reconciled with the Standard Model expectations for neutral-meson mixings, provided that the CP asymmetry in semileptonic b (c) decays reaches 0.3 % (1%). Such effects, which lie within the available (rather loose) experimental bounds, would be clear indications of New Physics and should be investigated experimentally.Comment: Corrected discussion of the SM contributions to the direct semileptonic CP asymmetries in B decays. Main results and conclusions unchange

    B meson light-cone wavefunctions in the heavy quark limit

    Get PDF
    We present a systematic study of the B meson light-cone wavefunctions in QCD in the heavy-quark limit. We construct model-independent formulae for the light-cone wavefunctions in terms of independent dynamical degrees of freedom, which exactly satisfy the QCD equations of motion and constraints from heavy-quark symmetry. The results demonstrate novel behaviors of longitudinal as well as transverse momentum distribution in the B mesons.Comment: 5 pages LaTeX, 1 style file. Talk presented at RADCOR/Loops and Legs 2002, Kloster Banz, Germany, September 8-13, 200

    Implications from clean observables for the binned analysis of B -> K*ll at large recoil

    Get PDF
    We perform a frequentist analysis of q^2-dependent B-> K*(->Kpi)ll angular observables at large recoil, aiming at bridging the gap between current theoretical analyses and the actual experimental measurements. We focus on the most appropriate set of observables to measure and on the role of the q^2-binning. We highlight the importance of the observables P_i exhibiting a limited sensitivity to soft form factors for the search for New Physics contributions. We compute predictions for these binned observables in the Standard Model, and we compare them with their experimental determination extracted from recent LHCb data. Analyzing b->s and b->sll transitions within four different New Physics scenarios, we identify several New Physics benchmark points which can be discriminated through the measurement of P_i observables with a fine q^2-binning. We emphasise the importance (and risks) of using observables with (un)suppressed dependence on soft form factors for the search of New Physics, which we illustrate by the different size of hadronic uncertainties attached to two related observables (P_1 and S_3). We illustrate how the q^2-dependent angular observables measured in several bins can help to unravel New Physics contributions to B-> K*(->Kpi)ll, and show the extraordinary constraining power that the clean observables will have in the near future. We provide semi-numerical expressions for these observables as functions of the relevant Wilson coefficients at the low scale.Comment: 50 pages, 21 figures. Improved form factor analysis, conclusions unchanged. Plots with full resolution. Version published in JHE

    Chiral Extrapolation of the Strangeness Changing K pi Form Factor

    Get PDF
    We perform a chiral extrapolation of lattice data on the scalar K pi form factor and the ratio of the kaon and pion decay constants within Chiral Perturbation Theory to two loops. We determine the value of the scalar form factor at zero momentum transfer, at the Callan-Treiman point and at its soft kaon analog as well as its slope. Results are in good agreement with their determination from experiment using the standard couplings of quarks to the W boson. The slope is however rather large. A study of the convergence of the chiral expansion is also performed.Comment: few minor change

    On the precision of chiral-dispersive calculations of ππ\pi\pi scattering

    Get PDF
    We calculate the combination 2a0(0)5a0(2)2a_0^{(0)}-5a_0^{(2)} (the Olsson sum rule) and the scattering lengths and effective ranges a1a_1, a2(I)a_2^{(I)} and b1b_1, b2(I)b_2^{(I)} dispersively (with the Froissart--Gribov representation) using, at low energy, the phase shifts for ππ\pi\pi scattering obtained by Colangelo, Gasser and Leutwyler (CGL) from the Roy equations and chiral perturbation theory, plus experiment and Regge behaviour at high energy, or directly, using the CGL parameters for aas and bbs. We find mismatch, both among the CGL phases themselves and with the results obtained from the pion form factor. This reaches the level of several (2 to 5) standard deviations, and is essentially independent of the details of the intermediate energy region (0.82E1.420.82\leq E\leq 1.42 GeV) and, in some cases, of the high energy behaviour assumed. We discuss possible reasons for this mismatch, in particular in connection with an alternate set of phase shifts.Comment: Version to appear in Phys. Rev. D. Graphs and sum rule added. Plain TeX fil

    Solving integral equations in η3π\eta\to 3\pi

    Full text link
    A dispersive analysis of η3π\eta\to 3\pi decays has been performed in the past by many authors. The numerical analysis of the pertinent integral equations is hampered by two technical difficulties: i) The angular averages of the amplitudes need to be performed along a complicated path in the complex plane. ii) The averaged amplitudes develop singularities along the path of integration in the dispersive representation of the full amplitudes. It is a delicate affair to handle these singularities properly, and independent checks of the obtained solutions are demanding and time consuming. In the present article, we propose a solution method that avoids these difficulties. It is based on a simple deformation of the path of integration in the dispersive representation (not in the angular average). Numerical solutions are then obtained rather straightforwardly. We expect that the method also works for ω3π\omega\to 3\pi.Comment: 11 pages, 10 Figures. Version accepted for publication in EPJC. The ancillary files contain an updated set of fundamental solutions. The numerical differences to the former set are tiny, see the READMEv2 file for detail
    corecore