70 research outputs found

    HeterocikliÄŤki derivati progesterona s antimikrobnim djelovanjem

    Get PDF
    The aim of this work was to synthesize steroidal heterocycles and to elucidate the potential role of these compounds as antimicrobial agents. The synthesis of steroidal heterocycles containing the pyrazole, isoxazole, thiazole, pyrane, pyridine, pyridazine, or benzopyrane ring attached to the pregnene nucleus is reported. Progesterone (1) reacts with dimethyl formamide dimethyl acetal to form enamine 2. Heterocyclization of 2 with hydrazines, hydroxylamine, glycine, ethylacetoacetate or cyanomethylene afforded novel steroidal heterocyclic derivatives. The in vitro antimicrobial evaluation showed that all synthesized compounds show activity against the used strains of Gram positive bacteria and fungi.U radu je opisana sinteza steroidnih heterocikliÄŤkih spojeva i evaluacija njihovog antimikrobnog djelovanja. Sintetizirani spojevi sadrĹľe pirazol, izoksazol, tiazol, piran, piridin, piridazin ili benzopiran na pregnenskoj jezgri. Progesteron (1) je prvo u reakciji s dimetil formamid dimetil acetalom dao enamin 2. Novi steroidni heterocikliÄŤki derivati dobiveni su heterociklizacijom spoja 2 s hidrazinima, hidroksilaminom, glicinom, etilacetoaceatom i cijanometilenom. Antimikrobno vrednovanje in vitro pokazalo je da su svi sintetizirani spojevi aktivni protiv testiranih Gram pozitivnih bakterija i gljivica

    Inhibition by anandamide of gap junctions and intercellular calcium signalling in striatal astrocytes

    Full text link
    Anandamide, an endogenous arachidonic acid derivative that is released from neurons and activates cannabinoid receptors, may act as a transcellular cannabimimetic messenger in the central nervous system. The biological actions of anandamide and the identity of its target cells are, however, still poorly documented. Here we show that anandamide is a potent inhibitor of gap-junction conductance and dye permeability in striatal astrocytes. This inhibitory effect is specific for anandamide as compared to co-released congeners or structural analogues, is sensitive to pertussis toxin and to protein-alkylating agents, and is neither mimicked by cannabinoid-receptor agonists nor prevented by a cannabinoid-receptor antagonist. Glutamate released from neurons evokes calcium waves in astrocytes that propagate via gap junctions, and may, in turn, activate neurons distant from their initiation sites in astrocytes. We find that anandamide blocks the propagation of astrocyte calcium waves generated by either mechanical stimulation or local glutamate application. Thus, by regulating gap-junction permeability, anandamide may control intercellular communication in astrocytes and therefore neuron-glial interactions

    Impact of the kinetics of salt crystallization on stone damage during rewetting/drying and humidity cycling

    No full text
    International audienceIn this study, we show that the key to understand why the same salt can cause damage in some conditions and not in others is the kinetics of crystallization. We present experiments assessing the impact of the recrystallization dynamics of sodium sulfate on damage observed in sandstone after repeated cycles of rewetting/drying and humidification/drying. Macroscopic and microscopic scale experiments using magnetic resonance imaging and phase contrast microscopy demonstrate that sodium sulfate that has both hydrated and anhydrous phases can lead to severe damage in sandstone during rewetting/drying cycles, but not during humidity cycling. During rewetting (a rapid process) in regions (pores) that are highly concentrated in salt, anhydrous microcrystals dissolve only partially, giving rise to a heterogeneous salt solution that is supersaturated with respect to the hydrated phase. The remaining anhydrous crystals then act as seeds for the formation of large amounts of hydrated crystals, creating grape-like structures that expand rapidly. These clusters can generate stresses larger than the tensile strength of the stone, leading to damage. On the other hand, with humidification (a slow process) and after complete deliquescence of salt crystals, the homogeneous sodium sulfate solution can reach high concentrations during evaporation without any nucleation, favoring the formation of isolated anhydrous crystals (thenardite). The crystallization of the anhydrous salt generates only very small stresses compared to the hydrated clusters and therefore causes hardly any damage to the stone. © 2013 American Society of Mechanical Engineers
    • …
    corecore