346 research outputs found

    A Rigorous Treatment of Energy Extraction from a Rotating Black Hole

    Get PDF
    The Cauchy problem is considered for the scalar wave equation in the Kerr geometry. We prove that by choosing a suitable wave packet as initial data, one can extract energy from the black hole, thereby putting supperradiance, the wave analogue of the Penrose process, into a rigorous mathematical framework. We quantify the maximal energy gain. We also compute the infinitesimal change of mass and angular momentum of the black hole, in agreement with Christodoulou's result for the Penrose process. The main mathematical tool is our previously derived integral representation of the wave propagator.Comment: 19 pages, LaTeX, proof of Propositions 2.3 and 3.1 given in more detai

    On matching conditions for cosmological perturbations

    Get PDF
    We derive the matching conditions for cosmological perturbations in a Friedmann Universe where the equation of state undergoes a sharp jump, for instance as a result of a phase transition. The physics of the transition which is needed to follow the fate of the perturbations is clarified. We dissipate misleading statements made recently in the literature concerning the predictions of the primordial fluctuations from inflation and confirm standard results. Applications to string cosmology are considered.Comment: 20 pages, latex (revtex), no figure

    ASYMPTOTIC BEHAVIOR OF COMPLEX SCALAR FIELDS IN A FRIEDMAN-LEMAITRE UNIVERSE

    Full text link
    We study the coupled Einstein-Klein-Gordon equations for a complex scalar field with and without a quartic self-interaction in a curvatureless Friedman-Lema\^{\i}\-tre Universe. The equations can be written as a set of four coupled first order non-linear differential equations, for which we establish the phase portrait for the time evolution of the scalar field. To that purpose we find the singular points of the differential equations lying in the finite region and at infinity of the phase space and study the corresponding asymptotic behavior of the solutions. This knowledge is of relevance, since it provides the initial conditions which are needed to solve numerically the differential equations. For some singular points lying at infinity we recover the expected emergence of an inflationary stage.Comment: uuencoded, compressed tarfile containing a 15 pages Latex file and 2 postscipt figures. Accepted for publication on Phys. Rev.

    Conservation Laws and Cosmological Perturbations in Curved Universes

    Get PDF
    When working in synchronous gauges, pseudo-tensor conservation laws are often used to set the initial conditions for cosmological scalar perturbations, when those are generated by topological defects which suddenly appear in an up to then perfectly homogeneous and isotropic universe. However those conservation laws are restricted to spatially flat (K=0) Friedmann-Lema\^\i tre spacetimes. In this paper, we first show that in fact they implement a matching condition between the pre- and post- transition eras and, in doing so, we are able to generalize them and set the initial conditions for all KK. Finally, in the long wavelength limit, we encode them into a vector conservation law having a well-defined geometrical meaning.Comment: 15 pages, no figure, to appear in Phys. Rev.

    New features of flat (4+1)-dimensional cosmological model with a perfect fluid in Gauss-Bonnet gravity

    Full text link
    We investigated a flat multidimensional cosmological model in Gauss-Bonnet gravity in presence of a matter in form of perfect fluid. We found analytically new stationary regimes (these results are valid for arbitrary number of spatial dimensions) and studied their stability by means of numerical recipes in 4+1-dimensional case. In the vicinity of the stationary regime we discovered numerically another non-singular regime which appears to be periodical. Finally, we demonstrated that the presence of matter in form of a perfect fluid lifts some constraints on the dynamics of the 4+1-dimensional model which have been found earlier.Comment: 14 pages, 5 figures, 1 table; v2 minor corrections, conclusions unchange

    Brane versus shell cosmologies in Einstein and Einstein-Gauss-Bonnet theories

    Get PDF
    We first illustrate on a simple example how, in existing brane cosmological models, the connection of a 'bulk' region to its mirror image creates matter on the 'brane'. Next, we present a cosmological model with no Z2Z_2 symmetry which is a spherical symmetric 'shell' separating two metrically different 5-dimensional anti-de Sitter regions. We find that our model becomes Friedmannian at late times, like present brane models, but that its early time behaviour is very different: the scale factor grows from a non-zero value at the big bang singularity. We then show how the Israel matching conditions across the membrane (that is either a brane or a shell) have to be modified if more general equations than Einstein's, including a Gauss-Bonnet correction, hold in the bulk, as is likely to be the case in a low energy limit of string theory. We find that the membrane can then no longer be treated in the thin wall approximation. However its microphysics may, in some instances, be simply hidden in a renormalization of Einstein's constant, in which cases Einstein and Gauss-Bonnet membranes are identical.Comment: 15 pages, submitted to Phys. Rev.

    Normal modes for metric fluctuations in a class of higher-dimensional backgrounds

    Full text link
    We discuss a gauge invariant approach to the theory of cosmological perturbations in a higher-dimensonal background. We find the normal modes which diagonalize the perturbed action, for a scalar field minimally coupled to gravity, in a higher-dimensional manifold M of the Bianchi-type I, under the assumption that the translations along an isotropic spatial subsection of M are isometries of the full, perturbed background. We show that, in the absence of scalar field potential, the canonical variables for scalar and tensor metric perturbations satisfy exactly the same evolution equation, and we discuss the possible dependence of the spectrum on the number of internal dimensions.Comment: 19 pages, LATEX, an explicit example is added to discuss the possible dependence of the perturbation spectrum on the number of internal dimensions. To apper in Class. Quantum Gra

    Aspects of Scalar Field Dynamics in Gauss-Bonnet Brane Worlds

    Full text link
    The Einstein-Gauss-Bonnet equations projected from the bulk to brane lead to a complicated Friedmann equation which simplifies to H2∌ρqH^2 \sim \rho^q in the asymptotic regimes. The Randall-Sundrum (RS) scenario corresponds to q=2q=2 whereas q=2/3q=2/3 & q=1q=1 give rise to high energy Gauss-Bonnet (GB) regime and the standard GR respectively. Amazingly, while evolving from RS regime to high energy GB limit, one passes through a GR like region which has important implications for brane world inflation. For tachyon GB inflation with potentials V(ϕ)∌ϕpV(\phi) \sim \phi^p investigated in this paper, the scalar to tensor ratio of perturbations RR is maximum around the RS region and is generally suppressed in the high energy regime for the positive values of pp. The ratio is very low for p>0p>0 at all energy scales relative to GB inflation with ordinary scalar field. The models based upon tachyon inflation with polynomial type of potentials with generic positive values of pp turn out to be in the 1σ1 \sigma observational contour bound at all energy scales varying from GR to high energy GB limit. The spectral index nSn_S improves for the lower values of pp and approaches its scale invariant limit for p=−2p=-2 in the high energy GB regime. The ratio RR also remains small for large negative values of pp, however, difference arises for models close to scale invariance limit. In this case, the tensor to scale ratio is large in the GB regime whereas it is suppressed in the intermediate region between RS and GB. Within the frame work of patch cosmologies governed by H2∌ρqH^2 \sim \rho^q, the behavior of ordinary scalar field near cosmological singularity and the nature of scaling solutions are distinguished for the values of q1q 1.Comment: 15 pages, 10 eps figures; appendix on various scales in GB brane world included and references updated; final version to appear in PR

    Quantum properties of the Dirac field on BTZ black hole backgrounds

    Full text link
    We consider a Dirac field on a (1+2)(1 + 2)-dimensional uncharged BTZ black hole background. We first find out the Dirac Hamiltonian, and study its self-adjointness properties. We find that, in analogy to the Kerr-Newman-AdS Dirac Hamiltonian in (1+3)(1+3) dimensions, essential self-adjointness on C0∞(r+,∞)2C_0^{\infty}(r_+,\infty)^2 of the reduced (radial) Hamiltonian is implemented only if a suitable relation between the mass ÎŒ\mu of the Dirac field and the cosmological radius ll holds true. The very presence of a boundary-like behaviour of r=∞r=\infty is at the root of this problem. Also, we determine in a complete way qualitative spectral properties for the non-extremal case, for which we can infer the absence of quantum bound states for the Dirac field. Next, we investigate the possibility of a quantum loss of angular momentum for the (1+2)(1 + 2)-dimensional uncharged BTZ black hole. Unlike the corresponding stationary four-dimensional solutions, the formal treatment of the level crossing mechanism is much simpler. We find that, even in the extremal case, no level crossing takes place. Therefore, no quantum loss of angular momentum via particle pair production is allowed.Comment: 19 pages; IOP styl

    Nature of singularities in anisotropic string cosmology

    Get PDF
    We study nature of singularities in anisotropic string-inspired cosmological models in the presence of a Gauss-Bonnet term. We analyze two string gravity models-- dilaton-driven and modulus-driven cases-- in the Bianchi type-I background without an axion field. In both scenarios singularities can be classified in two ways- the determinant singularity where the main determinant of the system vanishes and the ordinary singularity where at least one of the anisotropic expansion rates of the Universe diverges. In the dilaton case, either of these singularities inevitably appears during the evolution of the system. In the modulus case, nonsingular cosmological solutions exist both in asymptotic past and future with determinant D=+∞D=+\infty and D=2, respectively. In both scenarios nonsingular trajectories in either future or past typically meet the determinant singularity in past/future when the solutions are singular, apart from the exceptional case where the sign of the time-derivative of dilaton is negative. This implies that the determinant singularity may play a crucial role to lead to singular solutions in an anisotropic background.Comment: 21 pages, 8 figure
    • 

    corecore