327 research outputs found

    Study of Eclipsing Binary and Multiple Systems in OB Associations II. The Cygnus OB Region: V443 Cyg, V456 Cyg and V2107 Cyg

    Full text link
    Three presumably young eclipsing binary systems in the direction of the Cygnus OB1, OB3 and OB9 associations are studied. Component spectra are reconstructed and their orbits are determined using light curves and spectra disentangling techniques. V443 Cyg and V456 Cyg have circular orbits, while the light curve of V2107\,Cyg imposes a slightly eccentric orbit (e=0.045±0.03)e=0.045\pm0.03). V443 Cyg harbours F-type stars, and not young early-A stars as previously suggested in the literature based on photometry solely. It appears to be situated in the foreground (distance 0.6±0.20.6\pm0.2 kpc) of the young stellar populations in Cygnus. V456 Cyg, at a distance of 0.50±0.030.50\pm0.03 kpc consists of a slightly metal-weak A--type and an early--F star. The age of both systems, on or very near to the main sequence, remains uncertain by an order of magnitude. V2107 Cyg is a more massive system (8.9±28.9\pm2 and 4.5±1.2M4.5\pm1.2 M_\odot) at 1.5±0.51.5\pm0.5 kpc and, also kinematically, a strong candidate-member of Cyg OB1. The more massive component is slightly evolved and appears to undergo non-radial βCep\beta Cep-type pulsations. The Doppler signal of the secondary is barely detectable. A more extensive study is important to fix masses more precisely, and an asteroseismological study would then become appropriate. Nevertheless, the position of the primary in the HR-diagram confines the age already reasonably well to 20±520\pm5 Myr, indicating for Cyg OB1 a similar extent of star formation history as established for Cyg OB2.Comment: 27 pages, including 9 figures and 6 tables, accepted for publication in Astronomical Journa

    The Spectroscopic Orbits of Three Double-lined Eclipsing Binaries: I. BG Ind, IM Mon, RS Sgr

    Full text link
    We present the spectroscopic orbit solutions of three double-lines eclipsing binaries, BG Ind, IM Mon and RS Sgr. The first precise radial velocities (RVs) of the components were determined using high resolution echelle spectra obtained at Mt. John University Observatory in New Zealand. The RVs of the components of BG Ind and RS Sgr were measured using Gaussian fittings to the selected spectral lines, whereas two-dimensional cross-correlation technique was preferred to determine the RVs of IM Mon since it has relatively short orbital period among the other targets and so blending of the lines is more effective. For all systems, the Keplerian orbital solution was used during the analysis and also circular orbit was adopted because the eccentricities for all targets were found to be negligible. The first precise orbit analysis of these systems gives the mass ratios of the systems as 0.894, 0.606 and 0.325, respectively for BG Ind, IM Mon and RS Sgr. Comparison of the mass ratio values, orbital sizes and minimum masses of the components of the systems indicates that all systems should have different physical, dynamical and probable evolutionary status.Comment: 17 pages, 6 figures and 4 tables, accepted for publication in New Astronom

    All-optical attoclock: accessing exahertz dynamics of optical tunnelling through terahertz emission

    Full text link
    The debate regarding attosecond dynamics of optical tunneling has so far been focused on time delays associated with electron motion through the potential barrier created by intense ionizing laser fields and the atomic core. Compelling theoretical and experimental arguments have been put forward to advocate the polar opposite views, confirming or refuting the presence of tunnelling time delays. Yet, such delay, whether present or ot, is but a single quantity characterizing the tunnelling wavepacket; the underlying dynamics are richer. Here we propose to complement photo-electron detection with detecting light, focusing on the so-called Brunel adiation -- the near-instantaneous nonlinear optical response triggered by the tunnelling event. Using the combination of single-color and two-color driving fields, we determine not only the ionization delays, but also the re-shaping of the tunnelling wavepacket as it emerges from the classically forbidden region. Our work introduces a new type of attoclock for optical tunnelling, one that is based on measuring light rather than photo-electrons. All-optical detection paves the way to time-resolving multiphoton transitions across bandgaps in solids, on the attosecond time-scale

    Scattering of first and second sound waves by quantum vorticity in superfluid Helium

    Full text link
    We study the scattering of first and second sound waves by quantum vorticity in superfluid Helium using two-fluid hydrodynamics. The vorticity of the superfluid component and the sound interact because of the nonlinear character of these equations. Explicit expressions for the scattered pressure and temperature are worked out in a first Born approximation, and care is exercised in delimiting the range of validity of the assumptions needed for this approximation to hold. An incident second sound wave will partly convert into first sound, and an incident first sound wave will partly convert into second sound. General considerations show that most incident first sound converts into second sound, but not the other way around. These considerations are validated using a vortex dipole as an explicitely worked out example.Comment: 24 pages, Latex, to appear in Journal of Low Temperature Physic

    Magnus and Iordanskii Forces in Superfluids

    Full text link
    The total transverse force acting on a quantized vortex in a superfluid is a problem that has eluded a complete understanding for more than three decades. In this letter I propose a remarkably simple argument, somewhat reminiscent of Laughlin's beautiful argument for the quantization of conductance in the quantum Hall effect, to define the superfluid velocity part of the transverse force. This term is found to be ρsκs×vs- \rho_s {\kappa}_s \times {v}_s. Although this result does not seem to be overly controversial, this thermodynamic argument based only on macroscopic properties of the superfluid does offer a robust derivation. A recent publication by Thouless, Ao and Niu has demonstrated that the vortex velocity part of the transverse force in a homogeneous neutral superfluid is given by the usual form ρsκs×vV\rho_s {\kappa}_s \times {v}_V. A combination of these two independent results and the required Galilean invariance yields that there cannot be any transverse force proportional to the normal fluid velocity, in apparent conflict with Iordanskii's theory of the transverse force due to phonon scattering by the vortex.Comment: RevTex, 1 Encapsulated Postscript figur

    Binary coalescence from case A evolution -- mergers and blue stragglers

    Full text link
    We constructed some main-sequence mergers from case A binary evolution and studied their characteristics via Eggleton's stellar evolution code. Both total mass and orbital angular momentum are conservative in our binary evolutions. Some mergers might be on the left of the ZAMS as defined by normal surface composition on a CMD because of enhanced surface helium content. The study also shows that central hydrogen content of the mergers is independent of mass. As a consequence, we fit the formula of magnitude and B-V of the mergers when they return back to thermal equilibrium with maximum error 0.29 and 0.037, respectively. Employing the consequences above, we performed Monte Carlo simulations to examine our models in NGC 2682 and NGC 2660. In NGC 2682, binary mergers from our models cover the region with high luminosity, but its importance is much less than that of AML. Our results are well-matched to the observations of NGC2660 if there is about 0.5Mo of mass loss in the merger process.Comment: 14 pages, 12 figures. accepted by MNRA
    corecore