27 research outputs found

    Diffraction microtomography with sample rotation: influence of a missing apple core in the recorded frequency space

    Full text link
    Diffraction microtomography in coherent light is foreseen as a promising technique to image transparent living samples in three dimensions without staining. Contrary to conventional microscopy with incoherent light, which gives morphological information only, diffraction microtomography makes it possible to obtain the complex optical refractive index of the observed sample by mapping a three-dimensional support in the spatial frequency domain. The technique can be implemented in two configurations, namely, by varying the sample illumination with a fixed sample or by rotating the sample using a fixed illumination. In the literature, only the former method was described in detail. In this report, we precisely derive the three-dimensional frequency support that can be mapped by the sample rotation configuration. We found that, within the first-order Born approximation, the volume of the frequency domain that can be mapped exhibits a missing part, the shape of which resembles that of an apple core. The projection of the diffracted waves in the frequency space onto the set of sphere caps covered by the sample rotation does not allow for a complete mapping of the frequency along the axis of rotation due to the finite radius of the sphere caps. We present simulations of the effects of this missing information on the reconstruction of ideal objects.Comment: 7 pages, 11 figures, presented at Focus On Microscopy 200

    Microsurgical neurovascular anastomosis: The example of superficial temporal artery to middle cerebral artery bypass. Technical principles

    Get PDF
    AbstractThe superficial temporal artery to the middle cerebral artery (STA-MCA) bypass is a good example of cerebrovascular anastomosis. In this article, we describe the different stages of the procedure: patient installation, superficial temporal artery harvesting, recipient artery exposure, microsurgical anastomosis, and closure of the craniotomy. When meticulously performed, with the observance of important details at each stage, this technique offers a high rate of technical success (patency>90%) with a very low morbi-mortality (respectively 3% and 1%). Some anesthetic parameters have to be considered to insure perioperative technical and clinical success. STA-MCA bypass is a very useful technique for the management of complex or giant aneurysms where surgical treatment sometimes requires the sacrifice and revascularization of a main arterial trunk. It is also a valuable option for the treatment of chronic and symptomatic hemispheric hypoperfusion (Moyamoya disease, carotid or middle cerebral artery occlusion)

    Visualizing Escherichia coli Sub-Cellular Structure Using Sparse Deconvolution Spatial Light Interference Tomography

    Get PDF
    Studying the 3D sub-cellular structure of living cells is essential to our understanding of biological function. However, tomographic imaging of live cells is challenging mainly because they are transparent, i.e., weakly scattering structures. Therefore, this type of imaging has been implemented largely using fluorescence techniques. While confocal fluorescence imaging is a common approach to achieve sectioning, it requires fluorescence probes that are often harmful to the living specimen. On the other hand, by using the intrinsic contrast of the structures it is possible to study living cells in a non-invasive manner. One method that provides high-resolution quantitative information about nanoscale structures is a broadband interferometric technique known as Spatial Light Interference Microscopy (SLIM). In addition to rendering quantitative phase information, when combined with a high numerical aperture objective, SLIM also provides excellent depth sectioning capabilities. However, like in all linear optical systems, SLIM's resolution is limited by diffraction. Here we present a novel 3D field deconvolution algorithm that exploits the sparsity of phase images and renders images with resolution beyond the diffraction limit. We employ this label-free method, called deconvolution Spatial Light Interference Tomography (dSLIT), to visualize coiled sub-cellular structures in E. coli cells which are most likely the cytoskeletal MreB protein and the division site regulating MinCDE proteins. Previously these structures have only been observed using specialized strains and plasmids and fluorescence techniques. Our results indicate that dSLIT can be employed to study such structures in a practical and non-invasive manner

    Rare Exonic Minisatellite Alleles in MUC2 Influence Susceptibility to Gastric Carcinoma

    Get PDF
    BACKGROUND: Mucins are the major components of mucus and their genes share a common, centrally-located region of sequence that encodes tandem repeats. Mucins are well known genes with respect to their specific expression levels; however, their genomic levels are unclear because of complex genomic properties. In this study, we identified eight novel minisatellites from the entire MUC2 region and investigated how allelic variation in these minisatellites may affect susceptibility to gastrointestinal cancer. METHODOLOGY/PRINCIPLE FINDINGS: We analyzed genomic DNA from the blood of normal healthy individuals and multi-generational family groups. Six of the eight minisatellites exhibited polymorphism and were transmitted meiotically in seven families, following Mendelian inheritance. Furthermore, a case-control study was performed that compared genomic DNA from 457 cancer-free controls with DNA from individuals with gastric (455), colon (192) and rectal (271) cancers. A statistically significant association was identified between rare exonic MUC2-MS6 alleles and the occurrence of gastric cancer: odds ratio (OR), 2.56; 95% confidence interval (CI), 1.31-5.04; and p = 0.0047. We focused on an association between rare alleles and gastric cancer. Rare alleles were divided into short (40, 43 and 44) and long (47, 50 and 54), according to their TR (tandem repeats) lengths. Interestingly, short rare alleles were associated with gastric cancer (OR = 5.6, 95% CI: 1.93-16.42; p = 0.00036). Moreover, hypervariable MUC2 minisatellites were analyzed in matched blood and cancer tissue from 28 patients with gastric cancer and in 4 cases of MUC2-MS2, minisatellites were found to have undergone rearrangement. CONCLUSIONS/SIGNIFICANCE: Our observations suggest that the short rare MUC2-MS6 alleles could function as identifiers for risk of gastric cancer. Additionally, we suggest that minisatellite instability might be associated with MUC2 function in cancer cells

    HPLC quantification of zolpidem and prothipendyl in a voluntary intoxication.

    No full text
    Zolpidem, a recently developed sleep inducer, and prothipendyl, a neuroleptic azaphenothiazine, were involved in a voluntary intoxication along with ethanol. After administration of flumazenil, a specific benzodiazepines antagonist, respiratory depression was corrected. HPLC with UV detection methods after selective extraction were developed to measure simultaneously prothipendyl and zolpidem without flumazenil interaction. These methods could be applied in drug monitoring and in emergency toxicology.Journal Articleinfo:eu-repo/semantics/publishe

    (2D+1) Spatial optical solitons in dye doped liquid crystal cells

    No full text

    GSURE criterion for unsupervised regularized reconstruction in tomographic diffractive microscopy

    No full text
    International audienceWe propose an unsupervised regularized inversion method for reconstruction of the 3D refractive index map of a sample in tomographic diffractive microscopy. It is based on the minimization of the generalized Stein’s unbiased risk estimator (GSURE) to automatically estimate optimal values for the hyperparameters of one or several regularization terms (sparsity, edge-preserving smoothness, total variation). We evaluate the performance of our approach on simulated and experimental limited-view data. Our results show that GSURE is an efficient criterion to find suitable regularization weights, which is a critical task, particularly in the context of reducing the amount of required data to allow faster yet efficient acquisitions and reconstructions
    corecore