383 research outputs found

    Microwave Tomography for Food Contamination Monitoring

    Get PDF
    The security of packaged food needs to be guaranteed to safeguard customers health. A raise of complaints of physical contaminations into food products pushes for the development of additional monitoring techniques to prevent any kind of hazards, but also to protect brands from customers trust loss. In this work, a prototype working at microwave frequencies is assessed and tested in a significant environment. It exploits the dielectric contrast between contaminants and food content, and it is it is mainly focused on two classes of intrusions matters, i.e. plastic and glass fragments of few mm size, that have limited detection by the existing in-line technologies, such as X-rays systems. The measurements and the resulting 3-D image reconstructions are encouraging and allow to aim at the development of an industrial prototype, monitoring packaged food in real-time along a production line

    A Microwave Imaging Device for Detecting Contaminants in Water-based Food Products

    Get PDF
    Food and beverage industries are paying an increasing attention to the development of new technologies for non-invasive assessment of food products. In particular, there is a need of deploying tools to detect low-density plastic, rubber, wood and glass that are unlikely to be detected by X-Rays, currently used in the most powerful commercial systems. To this end, we propose a microwave-based device, exploiting the dielectric contrast between potential intrusions (e.g., plastic fragments) and the surrounding medium, represented by the food/beverage product. In particular, this work aims to numerically assess this principle of detection to water-based products that are, due to the medium losses, a challenging category at microwaves. An antennas array surrounds the object moving along the production line, to monitor the electromagnetic signal variations with respect to a reference case. The working frequency is chosen by selecting a proper trade-off between penetration depth and image resolution. Then, a procedure, based on the application of the distorted-Born approximation is applied to reconstruct a 3-D image of the contaminant position. Finally, the successful detection of a millimetric-sized plastic sphere is presented in the case of a common commercial bottle filled with water

    Experimental Validation of a 3D Microwave Imaging Device for Brain Stroke Monitoring

    Get PDF
    In this work we present the experimental validation of a 3D microwave imaging device to brain observation. The device is conceived as a way to monitor stroke development, supporting physicians in the follow-up of patients in the aftermath of cerebrovascular accidents, and giving to them extra information for decision-making and application of therapies. The device acquires data through antennas placed around the patient head, in a low-complexity system that guarantees that available information is enough for reliable outcome. Experimental testing is performed on a 3-D human-like head phantom with promising results

    Assessing a Microwave Imaging System for Brain Stroke Monitoring via High Fidelity Numerical Modelling

    Get PDF
    This work presents the outcomes of a numerical analysis based on a 3-D high fidelity model of a realistic microwave imaging system for the clinical follow-up of brain stroke. The analysis is meant as a preliminary step towards the full experimental characterization of the system, with the aim of assessing the achievable results and highlight possible critical points. The system consists of an array of twenty-four printed monopole antennas, placed conformal to the upper part of the head; each monopole is immersed into a semi-solid dielectric brick with custom permittivity, acting as coupling medium. The whole system, including the antennas and their feeding mechanism, has been numerically modeled via a custom full-wave software based on the finite element method. The numerical model generates reliable electromagnetic operators and accurate antenna scattering parameters, which provide the input data for the implemented imaging algorithm. In particular, the numerical analysis assesses the capability of the device of reliably monitoring the evolution of hemorrhages and ischemias, considering the progression from a healthy statet o an early-stage stroke

    IP6K3 and IPMK variations in LOAD and longevity: evidence for a multifaceted signaling network at the crossroad between neurodegeneration and survival

    Get PDF
    Several studies reported that genetic variants predisposing to neurodegeneration were at higher frequencies in centenarians than in younger controls, suggesting they might favor also longevity. IP6K3 and IPMK regulate many crucial biological functions by mediating synthesis of inositol poly- and pyrophosphates and by acting non-enzymatically via protein–protein interactions. Our previous studies suggested they affect Late Onset Alzheimer Disease (LOAD) and longevity, respectively. Here, in the same sample groups, we investigated whether variants of IP6K3 also affect longevity, and variants of IPMK also influence LOAD susceptibility. We found that: i) a SNP of IP6K3 previously associated with increased risk of LOAD increased the chance to become long-lived, ii) SNPs of IPMK, previously associated with decreased longevity, were protective factors for LOAD, as previously observed for UCP4. SNP-SNP interaction analysis, including our previous data, highlighted phenotype-specific interactions between sets of alleles. Moreover, linkage disequilibrium and eQTL data associated to analyzed variants suggested mitochondria as crossroad of interconnected pathways crucial for susceptibility to neurodegeneration and/or longevity. Overall, data support the view that in these traits interactions may be more important than single polymorphisms. This phenomenon may contribute to the non-additive heritability of neurodegeneration and longevity and be part of the missing heritability of these traits

    Wearable Microwave Imaging System for Brain Stroke Imaging

    Get PDF
    This paper presents the experimental validation of the detection capabilities of a low complexity wearable system designed for the imaging-based detection of brain stroke. The system approaches the electromagnetic inverse problem via a 3-D imaging algorithm based on the Born approximation and the Truncated Singular Value Decomposition (TSVD). For testing, flexible antennas with custom-made coupling-medium are prototyped and assessed in mimicked hemorrhagic and ischemic stroke conditions. The experiment emulates the clinical scenario using a single-tissue anthropomorphic head phantom and strokes with both 20 cm 3 and 60 cm 3 ellipsoid targets. The imaging kernel is computed via full-wave simulation of a virtual twin model. The results demonstrate the capabilities for detecting and estimating the stroke-affected area

    Preliminary In-Line Microwave Imaging Experimental Assessment for Food Contamination Monitoring

    Get PDF
    Food producers must deal with contaminants (wood, plastic, glass) inside packaged products that could lead to customer dissatisfaction. The assessed technologies fail to detect some of these contaminants, leading to the need for new technologies with different signal qualities, such as microwave sensing. This paper presents a preliminary result of a microwave imaging system designed for industrial applications. The measurement system was designed for and works on an industrial conveyor belt where packaged products are scanned. The scanned signals are processed to obtain an accurate 3D image of the size and position of the contaminant inside the food package. In addition to the results, we describe the implemented system and some considerations on data acquisition
    • …
    corecore