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Take-Home Messages  

• This work deals with the use of microwave imaging (MWI) for brain stroke monitoring and presents a 
validation of an MWI prototype by means of a high-fidelity numerical model. 

• The numerical analysis reported in the paper shows that the considered MWI system is capable of performing 
the monitoring of hemorrhages and clots. 

• The paper deals with continuous monitoring of brain stroke, which is still an unmet clinical need which 
cannot be performed with currently adopted imaging modalities like magnetic resonance imaging (MRI) and 
computerized x-ray tomography (CT). 

• The main claim of the work is to show how the adoption of a high-fidelity device-specific numerical model is 
important to perform in silico experiments of complex scenarios needed to address subsequent experimental 
activities. 
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Assessing a Microwave Imaging System for Brain
Stroke Monitoring via High Fidelity Numerical

Modelling
D. O. Rodriguez-Duarte, Student Member, IEEE, J. A. Tobon Vasquez, Member, IEEE,

R. Scapaticci, Member, IEEE, L. Crocco, Senior Member, IEEE and F. Vipiana, Senior Member, IEEE

Abstract—This work presents the outcomes of a numerical analysis based on a 3-D high fidelity model of a realistic microwave

imaging system for the clinical follow-up of brain stroke. The analysis is meant as a preliminary step towards the full experimental

characterization of the system, with the aim of assessing the achievable results and highlight possible critical points. The system

consists of an array of twenty-four printed monopole antennas, placed conformal to the upper part of the head; each monopole

is immersed into a semi-solid dielectric brick with custom permittivity, acting as coupling medium. The whole system, including

the antennas and their feeding mechanism, has been numerically modeled via a custom full-wave software based on the finite

element method. The numerical model generates reliable electromagnetic operators and accurate antenna scattering parameters,

which provide the input data for the implemented imaging algorithm. In particular, the numerical analysis assesses the capability

of the device of reliably monitoring the evolution of hemorrhages and ischemias, considering the progression from a healthy state

to an early-stage stroke.

Keywords—Microwave imaging, numerical simulation, stroke, biomedical imaging, microwave antenna arrays, microwave propaga-

tion.

I. INTRODUCTION

S
TROKE is a brain injury that occurs when oxygen-rich
blood supply to the brain is interrupted, causing a severe

damage in the affected area and leading to transitory or
permanent disability or even death. It is triggered when a blood
vessel of the brain either bursts (or ruptures) or is blocked by
a clot. The first case, called intracranial hemorrhagic (ICH)
stroke, is the most deadly, while the second one, called
ischemic (IS) stroke, is the most common. Strokes represent a
critical medical emergency and adequate and prompt diagnosis
and treatment are essential to raise the probability of recovery
and reducing the patients’ damages, the risk of death, further
disabilities, or a second onset [1], [2].

The incidence of stroke makes it the third-largest cause of
death worldwide with over five millions of cases per year, and
represents a genuine challenge for the ageing societies and
the health system burden [3], [4]. Hence, industry, academic
and medical communities have been working on technological
solutions that improve the prognosis and support clinicians in
the early diagnosis (identification, detection and localization)
and subsequent treatment monitoring. Within the diagnosis
support instruments, the most well-established imaging-based
technologies are magnetic resonance imaging (MRI) and com-
puterized X-ray tomography (CT) [5]. Although the mentioned

Manuscript received XXX, 2020; accepted XXX. Date of publication XXX;
date of current version XXX. This work was supported by the Italian Ministry
of University and Research under the PRIN project “MiBraScan”, and by the
European Union’s Horizon 2020 Research and Innovation Program under the
EMERALD project, Marie Sklodowska-Curie grant agreement No. 764479.
(Corresponding author: Francesca Vipiana)

D. O. Rodriguez-Duarte, J. A. Tobon Vasquez and F. Vipiana are with the
Department of Electronics and Telecommunications, Politecnico di Torino,
10129 Torino, Italy (e-mail: francesca.vipiana@polito.it).

R. Scapaticci and L. Crocco are with the Institute for the Electromagnetic
Sensing of the Environment, National Research Council of Italy, 80124
Naples, Italy (e-mail: scapaticci.r@irea.cnr.it; crocco.l@irea.cnr.it).

technologies deliver highly reliable diagnostic information,
there are intrinsic drawbacks in terms of portability, cost and
safeness (for CT only) that limit their applicability.

These limitations have driven the development of novel
complementary technologies for diagnostic imaging. Among
the upcoming technologies, microwave imaging (MWI) is
an enticing non-ionizing, low-intensity and cost-effective ap-
proach, which enables pre-hospital diagnosis of the kind of
stroke, bedside brain imaging, and continuous monitoring
during the post-acute stage. MWI relies on the contrast of
the electrical properties (permittivity and conductivity) at
microwave frequencies between healthy tissues of the brain
and the stroke-affected ones (e.g., ischemic area versus regular
gray or white matter).

In the last years, several researchers have been working on
the development of MWI devices and prototypes for the detec-
tion, classification and monitoring of brain strokes, validating
the promising capabilities of this technology. Currently, the
most prominent industrial groups are Medfield Diagnostics
AB with “Strokefinder”, device used for the discrimination
between ischemic and hemorrhagic strokes in the early stage,
and EMTensor GmbH with “BrainScanner”, a tomographic
microwave brain scanner [6], [7]. Moreover, several prototypes
have been realized by research groups in academia [8]–[12].

This paper deals with the microwave imaging prototype
presented in [11] and presents the outcomes of a numerical
analysis aimed at assessing its performance. In particular, the
analysis is focused on the assessment of the capability of
the device to perform the follow-up of either ischemic and
hemorrhagic brain strokes, and it is meant as a preliminary step
towards the full experimental characterization of the system,
setting the achievable results and highlighting possible critical
points. To this end, a 3-D high fidelity model based on a cus-
tom software is exploited. The accurate numerical modelling
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is essential to properly implement the imaging algorithm;
in particular, it provides the device-specific electromagnetic
(EM) operators required to build the imaging kernel, from
whose accuracy depends the reliability and quality of the final
outcome image. Moreover, a high fidelity numerical model
allows to easily verify the capabilities of the realized MWI
system, emulating the scattering parameters in input to the
imaging algorithm, as well as virtually testing complex clinical
scenarios and laboratory setups.

The paper is organized as follows. Section II covers the
general description of the employed MWI system, the pro-
posed EM modelling, and the implemented imaging algorithm.
Then, Sect. III reports the obtained numerical results for the
monitoring of the possible evolution of ICH and IS strokes,
in either noiseless and noisy cases, with different levels of
signal-to-noise-ratio (SNR). Finally, Sect. IV summarize the
conclusions. Preliminary results have been reported in [13].

II. MATERIALS AND METHODS

A. MWI System Requirements

The analyzed MWI system consists of an optimized 24-
antenna-array distributed conformally to the upper part of the
head (like a helmet), as shown in Fig. 1(a), where each antenna
acts as transmitter and receiver. The number of antennas,
their positions and orientation have been designed following
the rigorous procedure proposed in [14], [15], that allows to
keep low the system complexity while preserving imaging
performance.

Each radiating element is composed by an optimized printed
monopole and a brick-shaped semi-solid coupling medium as
a single unit, locally tangent to the head surface [16]. The
monopole is back fed by a rigid coaxial cable and immersed
in the middle of the brick, as shown in Fig. 1(b)-(c), at 25 mm
from the brick surface, which is flush with the head, to limit the
near-field effects [17]. The working frequency band is chosen
at around 1 GHz, while the coupling medium permittivity is
✏r ⇠= 20 in order to have a good trade-off between the EM
penetration inside the head tissues and the spatial imaging
resolution. This choice is based on the multi-tissue analysis
proposed in [18] where it is evident a “forbidden” band for
the transmission coefficient between around 1.5 and 4 GHz.

B. EM Modelling

One crucial component to perform an accurate imaging
reconstruction is the EM modeling of the whole MWI system.
Reliable full-wave modeling provides accurate EM fields of
the scenario under test and scattering parameters at the antenna
ports. Here, we used a realistic 3-D CAD model working
together with a full-wave software, based on the finite element
method (FEM). The FEM solver employs the discretized
volumes, defined on a tetrahedral mesh, of the whole CAD
model with edge-basis functions, the curl-curl formulation
for the electric field and Galerkin testing. The metal pieces,
e.g. within the antenna, are stated as perfect electric con-
ductor (PEC) surfaces and the dielectric sub-volumes, e.g.
the bricks and the head, are modeled with the respective
relative permittivity, ✏r, and conductivity, �, associated to the

corresponding tetrahedra. Lastly, the whole system is held in
a discretized cylindrical container, terminated with absorbing
boundary conditions (ABC) [19].

Regarding the antenna feeding, which is a crucial part
to accurately compute the scattering parameters, each port
is modeled as a section of a rigid coaxial cable, as shown
Fig. 1(b). The metallic parts of the coaxial cable are modelled
with PEC surfaces with no thickness and no tetrahedral mesh
inside the metal, while its dielectric (lossless teflon) parts
are discretized with tetrahedra with associated ✏r = 2.2. The
port section, Sp, where the tangential electric field is enforced
when the antenna is excited, is at the end of the coaxial cable
[green part in Fig. 1(b)]. On Sp proper boundary conditions
are applied in order to emulate a matched coaxial cable [20],
while above Sp a no-meshed PEC “cup” is placed to avoid a
nonphysical coupling between the port section and the meshed
parts outside the cable.

The scattering parameter for each pair of antenna ports,
labelled as m and n, is then evaluated as

Smn =

8
><

>:

RR
Sp

Em·Einc
n dS

RR
Sp

|Einc
n |2 dS

if m 6= n
RR

Sp
En·Einc

n dS
RR

Sp
|Einc

n |2 dS
� 1 if m = n

(1)

where Einc
n is the electric field forced in the excited port n and

Em is the electric field evaluated at the port m via the FEM
solver. Einc

n can be represented with the transverse electro-
magnetic (TEM) mode of the coaxial cable as

Einc
n =

Vp
2⇡ ln (b/a)

⇢̂

⇢
, (2)

where a and b are the internal and external radii of the coaxial
cable, and ⇢ and ⇢̂ are the radial coordinate and radial unit
vector from the center of the coaxial cable in the port plane
[20]. The coefficient V is chosen equal to 1 V.

Fig. 1. Realistic geometrical models, units in mm; (a): conformal distribution
of the antenna array around the head; (b): CAD model of the antenna feeding;
(c): monopole antenna embedded into the dielectric brick.
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The human head is modeled with the 3-D anthropomorphic
phantom in [21], extracted from MRI data. Figure 2 shows
the internal structure of the head phantom together with all
the tissues included in the phantom and the values of their
dielectric properties at 1 GHz [22]. This is considered as
reference scenario of a healthy subject. Then, the stroke is
modeled using a capsule-shaped container placed on back of
the head, into the gray matter, as shown in Fig. 2. The capsule-
shaped container can be fully or partially filled with a material
mimicking dielectric properties of the hemorrhagic or ischemic
stroke conditions [23], [24]. The monitoring will consider first
the initial half-sphere (HS) stage and, then, its extension to the
whole capsule (CAP).

C. Imaging Algorithm

Considering that the main application of the analyzed imag-
ing system is the monitoring of the time evolution of the
stroke and that the imaging targets are “small-concentrate”
variations, a differential approach and the distorted Born
approximation are adopted [25]. Under these assumptions, the
mathematical framework of the underlying inverse scattering
problem is simplified allowing real-time and reliable imaging
of stroke’s follow-up [26]. In details, the algorithm input is a
differential scattering matrix, denoted as �S in the following,
that takes into account the scattering matrices of the system
in two distinct times. The output, say ��, is a 3-D map
of the electrical contrast variation in the respective period of
time studied. �� is given by the ratio between the complex
permittivity variation �✏, and the complex permittivity of the
reference (unperturbed) state, denoted as ✏b. Then, by relying
on the Born approximation, �S and �� are linearly related
as

�Sp,q = S {��} , (3)

where S is a linear and compact integral operator, whose ker-
nel is �j!✏b/(2 ap aq)Eb,p(rm) ·Eb,q(rm), where the symbol
“·” denotes the dot product between vectors, ! = 2⇡f is the
angular frequency, and ap and aq are the known incoming
root-power waves at the p and q antenna ports respectively

Fig. 2. (Left): multi-tissue head model; (top-right): half-sphere (HS) and
capsule-shape (CAP) stroke models; (bottom-right): dielectric properties at
1 GHz of all the head tissues and hemorrhagic and ischemic strokes.

[27], [28]. Eb,p and Eb,q are the electric field radiated inside
the imaging domain D at the reference state (i.e., unperturbed
scenario) by the p and q antenna respectively, and rm are the
points in which the imaging domain D is sampled.

A reliable and well-established method to invert (3) is
represented by the truncated singular value decomposition
(TSVD) scheme [29], where the unknown differential contrast
function is obtained through the inversion formula

�� =
LtX

n=1

1

�n
h�S, uni vn, (4)

where hu,�, vi is the singular value decomposition (SVD) of
the discretized scattering operator S . Lt is the truncation index
of the SVD, which acts as a regularization parameter, chosen
such to meet a good trade off between stability and accuracy
of the reconstruction [29].

III. NUMERICAL ANALYSIS OUTCOMES

The performed numerical analysis is meant to assess the
performance of the modelled MWI system and its capability
to monitor the time evolution of an hemorrhagic and ischemic
stroke.

A. MWI System Setup

As mentioned in Sect. II-A, the modeled MWI has been
designed to work at around 1 GHz. Then, to validate the
adequate functioning as whole, including the head, the re-
flection and transmission coefficients of the antenna array are
computed. The former, shown in Fig. 3, bears out the -10 dB
frequency band from 800 MHz to 1.12 GHz for all antennas, in
agreement with previous validations for a single antenna [16].
The variations among the different lines can be explained by
different antenna orientations and different parts of the head
close to the considered antenna. Moreover, Fig. 4 depicts the
transmission coefficient for one of the lateral antennas with
respect to the other 23 antennas, that is the base of the input
differential matrices necessary for the imaging procedure. In
all the frequency band and for all antenna pairs the amplitude
of the transmission coefficient is above -90 dB, hence well
above the noise floor of commercially available vector network
analyzers (VNA).

0.75 1 1.25 1.5

Frequency [GHz]

-30

-20

-10

0

|S
n

,n
| [

d
B

]

Fig. 3. Reflection coefficient amplitude; each line corresponds to the |Sn,n|
in dB for the n-th antenna of the MWI system with n = 1, . . . , 24.
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Fig. 4. Transmission coefficient amplitude; each line corresponds to the
|Sm,n| in dB with n = 1 (transmitting antenna) and m = 2, . . . , 24
(receiving antennas).

Fig. 5. Selection of tetrahedrons for ideal contrast; (left): HS case; (right):
CAP case.

In the following, we consider two main stages of monitor-
ing. The first stage covers the case when the patient evolves
from a healthy condition to stroke. For this case, the scenario,
at time instant t0, is the healthy head and, at time instant t1, is
a stroke with a shape of a half-sphere with volume 0.88 cm3

(see HS stroke in Fig. 2). We will refer to this case also as
“detection phase”. Instead, the second stage is indicated in the
following as “post-onset monitoring”: in this situation, at time
instant t0, the stroke has the half-sphere shape with volume
0.88 cm3, while, at time instant t1, its shape is extended to the
whole capsule with volume 3.1 cm3 (see CAP stroke in Fig. 2).
Since the stroke dimensions and their growth depends on
many factors, such as their location in the brain, the interested
blood vessels and the time of their diagnosis [30]–[33], the
dimensions and variations herein assumed are chosen such to
show the ultimate potential of the proposed technology and
they are related to the resolution of the MWI system at 1 GHz,
that is around 1 cm.

To asses the performance of the discretized scattering oper-
ator S , first of all, the “ideal” contrast of the monitoring cases
described above is projected on its right singular vectors vn
that span the discretized contrast space. As ideal, we mean
a contrast equal to 1 in the tetrahedrons where the stroke is
present and equal to 0 anywhere else. Figure 5 shows the
selected tetrahedrons when it is aimed the HS or the CAP case.
The obtained projections, shown in Fig. 6, can be considered
as the best possible reconstructions, for the two considered
monitoring cases, with the modeled MWI system.

Fig. 6. Projection of the ideal dielectric contrast on the right singular vectors
of the discretized scattering operator; the exact stroke location and shape are
indicated by red contours. Left: HS case; right: CAP case. (a)-(b): transverse
plane view; (c)-(d): frontal plane view; (e)-(f): sagittal plane view.

5 10 15 20

m-antenna

-130

-110

-90

|S
m

,1
| [

d
B

]

IS, Detection phase

IS, Post-onset monitoring

ICH, Detection phase

ICH, Post-onset monitoring

Fig. 7. Differential transmission coefficient amplitude of a lateral antenna
with respect to the other antennas.

B. MWI Reconstructions

Here, we investigate the monitoring capabilities of the MWI
system giving in input to the TSVD imaging algorithm the
simulated differential scattering matrices. To highlight the
level of the differential scattering parameters, in Fig. 7, the
amplitude of the transmission coefficients of one antenna
with respect to the others is reported. Two kind of strokes,
ischemic and hemorrhagic, are considered together with the
two monitoring cases previously described. In all cases, most
of the differential coefficients are above -120 dB, hence within
the dynamic range of a VNA with medium performance [34].

We can notice that the detection phase corresponds to
lower transmission coefficients with respect to the post-onset
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Fig. 8. Reconstructed images for a hemorrhagic stroke; the exact stroke
location and shape are indicated by red contours. Left: detection phase;
right: post-onset monitoring. (a)-(b): differential scattering matrices; (c)-
(d):transverse plane view; (e)-(f): frontal plane view; (g)-(h): sagittal plane
view.

monitoring, where the stroke volume variation is larger.
In Fig. 8, the case of a hemorrhagic stroke is analyzed.

The results in the first column correspond to the detection
phase, instead the ones in the second column to the post-onset
monitoring. The first row reports the differential scattering ma-
trices and the following rows show the reconstructed images
in the three main views. Good contrast reconstructions, almost
identical to the corresponding projections shown in Fig. 5,
are obtained in both cases, highlighting the progression of the
stroke area from the initial half-sphere to the capsule-shape.
Then, the same analysis is shown in Fig. 9 for the ischemic
stroke.

Finally, Figs. 10 and 11 report the same cases considered
in Figs. 8 and 9, respectively, adding noise to the scattering
matrices. The synthetic data are corrupted by additive white
Gaussian noise with two different levels assuming an input
(source) power of 6 dBm: signal-to-noise ratio (SNR) equal to
100 dB for the results reported in the first columns and SNR

Fig. 9. Reconstructed images for a ischemic stroke; the exact stroke location
and shape are indicated by red contours. Left: detection phase; right: post-
onset monitoring. (a)-(b): differential scattering matrices; (c)-(d):transverse
plane view; (e)-(f): frontal plane view; (g)-(h): sagittal plane view.

equal to 90 dB for the ones in the second columns. The noise
is added separately to the scattering matrices simulated at each
time instant, which are then differentiated to obtain the noisy
differential scattering matrices given in input to the imaging
algorithm. We can see that in all the cases the expected contrast
is well reconstructed even if the matrix pattern seems strongly
affected by the added noise.

The shown reconstructions have been quantitatively evalu-
ated via the root mean square error (RMSE) given by

RMSE =

sPNs

n=1 (�b����)2

Ns
, (5)

where Ns is the number of the samples of the discretized
domain, �b� the retrieved differential contrast (normalized
to its maximum) and �� the actual normalized differential
contrast. In Table I, we report the retrieved values of the RMSE
for both hemorrhagic and ischemic strokes at all the considered
levels of noise.
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Fig. 10. Reconstructed images for a hemorrhagic stroke; the exact stroke
location and shape are indicated by red contours. Left: SNR = 100 dB; right:
SNR = 90 dB. (a)-(b): differential scattering matrices, detection phase; (c)-
(d): reconstructed images in the transverse plane, detection phase; (e)-(f):
differential scattering matrices, post-onset monitoring; (g)-(h): reconstructed
images in the transverse plane, post-onset monitoring.

TABLE I
RECONSTRUCTION RMSE

Stroke kind SNR Empty – HS HS – CAP

Hemorrhagic
noiseless 0.078 0.112
100 dB 0.079 0.123
90 dB 0.103 0.130

Ischemic
noiseless 0.078 0.111
100 dB 0.081 0.122
90 dB 0.133 0.127

IV. CONCLUSION AND PERSPECTIVES

In this work the capabilities of a recently developed MWI
prototype for the clinical follow-up brain stroke [11] have been

Fig. 11. Reconstructed images for a ischemic stroke; the exact stroke
location and shape are indicated by red contours. Left: SNR = 100 dB; right:
SNR = 90 dB. (a)-(b): differential scattering matrices, detection phase; (c)-
(d): reconstructed images in the transverse plane, detection phase; (e)-(f):
differential scattering matrices, post-onset monitoring; (g)-(h): reconstructed
images in the transverse plane, post-onset monitoring.

assessed by means of a numerical analysis exploiting a custom
3-D high-fidelity numerical model of the system. The numer-
ical analysis has shown that the system is indeed capable of
performing the imaging of ischemic and hemorrhagic strokes
with dimensions and/or variations of the order of 1 cm.

Given the overall reliability of the virtually performed
assessment, the next step is to progress with actual experiments
replicating the simulated scenarios so to achieve the final
experimental assessment of the system. It is worth noting
that, in so doing, the high-fidelity numerical model will still
play a role as it will provide the device-specific mathematical
operators needed to build in an accurate and reliable way the
imaging kernel.
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