20 research outputs found

    Cryogenic Calibration Setup for Broadband Complex Impedance Measurements

    Full text link
    Reflection measurements give access to the complex impedance of a material on a wide frequency range. This is of interest to study the dynamical properties of various materials, for instance disordered superconductors. However reflection measurements made at cryogenic temperature suffer from the difficulty to reliably subtract the circuit contribution. Here we report on the design and first tests of a setup able to precisely calibrate in situ the sample reflection, at 4.2 K and up to 2 GHz, by switching and measuring, during the same cool down, the sample and three calibration standards.Comment: (6 pages, 6 figures

    Destruction of superconductivity in disordered materials : a dimensional crossover

    Full text link
    The disorder-induced Superconductor-to-Insulator Transition in amorphous Nbx_{x}Si1x_{1-x} two-dimensional thin films is studied for different niobium compositions xx through a variation of the sample thickness dd. We show that the critical thickness dcd_c, separating a superconducting regime from an insulating one, increases strongly with diminishing xx, thus attaining values of over 100 {\AA}. The corresponding phase diagram in the (d,x)(d, x) plane is inferred and related to the three-dimensional situation. The two-dimensional Superconductor-to-Insulator Transition well connects with the three-dimensional Superconductor-to-Metal Transition

    Effect of annealing on the superconducting properties of a-Nb(x)Si(1-x) thin films

    Full text link
    a-Nb(x)Si(1-x) thin films with thicknesses down to 25 {\AA} have been structurally characterized by TEM (Transmission Electron Microscopy) measurements. As-deposited or annealed films are shown to be continuous and homogeneous in composition and thickness, up to an annealing temperature of 500{\deg}C. We have carried out low temperature transport measurements on these films close to the superconductor-to-insulator transition (SIT), and shown a qualitative difference between the effect of annealing or composition, and a reduction of the film thickness on the superconducting properties of a-NbSi. These results question the pertinence of the sheet resistance R_square as the relevant parameter to describe the SIT.Comment: 9 pages, 12 figure

    Competition between electron pairing and phase coherence in superconducting interfaces

    Get PDF
    In LaAlO3/SrTiO3 heterostructures, a gate tunable superconducting electron gas is confined in a quantum well at the interface between two insulating oxides. Remarkably, the gas coexists with both magnetism and strong Rashba spin–orbit coupling. However, both the origin of superconductivity and the nature of the transition to the normal state over the whole doping range remain elusive. Here we use resonant microwave transport to extract the superfluid stiffness and the superconducting gap energy of the LaAlO3/SrTiO3 interface as a function of carrier density. We show that the superconducting phase diagram of this system is controlled by the competition between electron pairing and phase coherence. The analysis of the superfluid density reveals that only a very small fraction of the electrons condenses into the superconducting state. We propose that this corresponds to the weak filling of high- energy dxz/dyz bands in the quantum well, more apt to host superconductivity

    A search for low-mass WIMPs with EDELWEISS-II heat-and-ionization detectors

    Full text link
    We report on a search for low-energy (E < 20 keV) WIMP-induced nuclear recoils using data collected in 2009 - 2010 by EDELWEISS from four germanium detectors equipped with thermal sensors and an electrode design (ID) which allows to efficiently reject several sources of background. The data indicate no evidence for an exponential distribution of low-energy nuclear recoils that could be attributed to WIMP elastic scattering after an exposure of 113 kg.d. For WIMPs of mass 10 GeV, the observation of one event in the WIMP search region results in a 90% CL limit of 1.0x10^-5 pb on the spin-independent WIMP-nucleon scattering cross-section, which constrains the parameter space associated with the findings reported by the CoGeNT, DAMA and CRESST experiments.Comment: PRD rapid communication accepte

    Superconductor-Insulator Transition in Amorphous NbxSi1-x Thin Films. Comparison between Thickness, Density of State and Microscopic Disorder

    No full text
    International audienceWe report on the study of the Disordered-induced Superconductor-Insulator Transition (D-SIT) in NbxSi1-x thin films. These films, synthesized by electron-beam co-deposition, are continuous, amorphous, homogeneously disordered and structurally stable for a wide range of compositions, thicknesses and annealing temperature and thus particularly well suited for the study of D-SIT. We present an analysis of the D-SIT induced by three different parameters: the thickness, the Nb composition that changes the electronic density of states and the annealing temperature that changes the microscopic disorder. The annealing changes quantum interference patterns that decreases the local conductance. Our results show that the effect of the thickness on the destruction of superconductivity is very distinct from those of the composition or the annealing. We point out this material is particularly interesting to disentangle the effect of the parameters driving this quantum phase transition

    Sample-based calibration for cryogenic broadband microwave reflectometry measurements

    No full text
    International audienceThe characteristic frequencies of a system provide important information on the phenomena that govern its physical properties. In this framework, there has recently been renewed interest in cryogenic microwave characterization for condensed matter systems since it allows to probe energy scales of the order of a few μeV. However, broadband measurements of the absolute value of a sample response in this frequency range are extremely sensitive to its environment and require a careful calibration. In this paper, we present an in situ calibration method for cryogenic broadband microwave reflectometry experiments that is both simple to implement and through which the effect of the sample electromagnetic environment can be minimized. The calibration references are provided here by the sample itself, at three reference temperatures where its impedance is assumed or measured, and not by external standards as is usual. We compare the frequency-dependent complex impedance (0.1–2 GHz) of an a-Nb15Si85 superconducting thin film obtained through this Sample-Based Calibration (SBC) and through an Open-Short-Load Standard Calibration (SC) when working at a very low temperature (0.02–4 K) and show that the SBC allows us to obtain the absolute response of the sample. This method brings the calibration planes as close as possible to the sample, so that the environment electrodynamic response does not affect the measurement, provided it is temperature independent. This results in a heightened sensitivity, for a given experimental set–up
    corecore