27 research outputs found

    Hydrometeorological multi-model ensemble simulations of the 4 November 2011 flash flood event in Genoa, Italy, in the framework of the DRIHM Project

    Get PDF
    The e-Science environment developed in the framework of the EU-funded DRIHM project was used to demonstrate its ability to provide relevant, meaningful hydrometeorological forecasts. This was illustrated for the tragic case of 4 November 2011, when Genoa, Italy, was flooded as the result of heavy, convective precipitation that inundated the Bisagno catchment. The Meteorological Model Bridge (MMB), an innovative software component developed within the DRIHM project for the interoperability of meteorological and hydrological models, is a key component of the DRIHM e-Science environment. The MMB allowed three different rainfall-discharge models (DRiFt, RIBS and HBV) to be driven by four mesoscale limited-area atmospheric models (WRF-NMM, WRF-ARW, Meso-NH and AROME) and a downscaling algorithm (RainFARM) in a seamless fashion. In addition to this multi-model configuration, some of the models were run in probabilistic mode, thus giving a comprehensive account of modelling errors and a very large amount of likely hydrometeorological scenarios (> 1500). The multi-model approach proved to be necessary because, whilst various aspects of the event were successfully simulated by different models, none of the models reproduced all of these aspects correctly. It was shown that the resulting set of simulations helped identify key atmospheric processes responsible for the large rainfall accumulations over the Bisagno basin. The DRIHM e-Science environment facilitated an evaluation of the sensitivity to atmospheric and hydrological modelling errors. This showed that both had a significant impact on predicted discharges, the former being larger than the latter. Finally, the usefulness of the set of hydrometeorological simulations was assessed from a flash flood early-warning perspective

    Efficacy of four phosphate-mobilizing bacteria applied with an animal bone charcoal formulation in controlling Pythium aphanidermatum and Fusarium oxysporum f.sp. radicis lycopersici in tomato

    No full text
    Four taxonomically different bacteria, with the ability to mobilize phosphate (P) and to colonize animal bone charcoal (ABC), were tested for their capacity to control plant pathogens. Tests were performed in the greenhouse with young tomato plants in (potting) soil and in rockwool. Plants were infested with Pythium aphanidermatum and Fusarium oxysporum f.sp. radicis-lycopersici (FORL) causing respectively damping off and crown and root rot. ABC is a porous, phosphorous containing waste product from the food industry, and was used as carrier to introduce the bacteria into the growing media. Scanning electron microscopy (SEM) pictures showed the intensive colonization of the bacteria in the interior of ABC. Of the four tested strains, Pseudomonas chlororaphis 4.4.1 was most effective in controlling the diseases. It controlled P. aphanidermatum and FORL in tomato in each of the tests. The strain appeared to be a very good root colonizer, since 1–8% of the cultural bacterial population on the tomato roots or in rhizosphere soil consisted of the introduced strain. Population densities of P. chlororaphis 4.4.1 were 0.5–5 × 107 CFU g-1 root or rhizosphere soil. Peanibacillus polymyxa 12.4.1 and Streptomyces pseudovenezuelae 13.4.2 significantly controlled P. aphanidermatum in two tests in potting soil, whereas Bacillus pumilus 4.4.2 was not effective. FORL could be controlled by B. pumilus 4.4.2 and S. pseudovenezuelae 13.4.2 in only part of the tests, whereas P. polymyxa 12.4.1 was not effective. ABC is a novel carrier for delivery of biocontrol bacteria into soil or substrate and combines biocontrol with recycling a phosphorous-rich waste produc

    A Parallel IMAGE Processing Server for Distributed Applications

    No full text
    Permission to make digital or hard copies of portions of this work for personal or classroom use is granted provided that the copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise requires prior specific permission by the publisher mentioned above

    Phenol Composition and Susceptibility to FusariumOxysporum Dianthi in Carnation

    No full text
    Phenol composition of two carnation (Dianthus caryophyllus) cvs “Gloriana” and “Roland”, partially and highly resistant to F. oxysporum f. sp. dianthi, respectively, has been investigated with the aim of assessing the possible role of phenolic constituents both as biochemical markers of resistance and antifungal molecules. Analyses were performed through chromatography, NMR and MS methods. The results indicate that protocatechuic and vanillic acids are present in healthy and infected tissues of both cvs; the flavonol glycoside peltatoside. 2,6-Dimethoxybenzoic acid was detected in small amounts only in infected “Gloriana” cv while the highly resistant “Roland” cv contained the flavone datiscetin. This latter compound, due to its noticeable antifungal activity evidenced in in vitro trials, could be conceived both as a biochemical marker of resistance towards this pathogen and as a phytoanticipin

    Current & Future Issues of High-End Computing,

    No full text
    Permission to make digital or hard copies of portions of this work for personal or classroom use is granted provided that the copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise requires prior specific permission by the publisher mentioned above
    corecore