158 research outputs found
High-resolution shock-capturing numerical simulations of three-phase immiscible fluids from the unsaturated to the saturated zone
Numerical modeling of immiscible contaminant fluid flow in unsaturated and saturated porous aquifers is of great importance in many scientific fields to properly manage groundwater resources. We present a high-resolution numerical model that simulates three-phase immiscible fluid flow in both unsaturated and saturated zone in a porous aquifer. We use coupled conserved mass equations for each phase and study the dynamics of a multiphase fluid flow as a function of saturation, capillary pressure, permeability, and porosity of the different phases, initial and boundary conditions. To deal with the sharp front originated from the partial differential equations’ nonlinearity and accurately propagate the sharp front of the fluid component, we use a high-resolution shock-capturing method to treat discontinuities due to capillary pressure and permeabilities that depend on the saturation of the three different phases. The main approach to the problem’s numerical solution is based on (full) explicit evolution of the discretized (in-space) variables. Since explicit methods require the time step to be sufficiently small, this condition is very restrictive, particularly for long-time integrations. With the increased computational speed and capacity of today’s multicore computer, it is possible to simulate in detail contaminants’ fate flow using high-performance computing
Investigating the migration of immiscible contaminant fluid flow in homogeneous and heterogeneous aquifers with high-precision numerical simulations
Numerical modeling of the migration of three-phase immiscible fluid flow in variably saturated zones is challenging due to the different behavior of the system between unsaturated and saturated zones. This behavior results in the use of different numerical methods for the numerical simulation of the fluid flow depending on whether it is in the unsaturated or saturated zones. This paper shows that using a high-resolution shock-capturing conservative method to resolve the nonlinear governing coupled partial differential equations of a three-phase immiscible fluid flow allows the numerical simulation of the system through both zones providing a unitary vision (and resolution) of the migration of an immiscible contaminant problem within a porous medium. In particular, using different initial scenarios (including impermeable “lenses” in heterogeneous aquifers), three-dimensional numerical simulation results are presented on the temporal evolution of the contaminant migration following the saturation profiles of the three-phases fluids flow in variably saturated zones. It is considered either light nonaqueous phase liquid with a density less than the water, or dense nonaqueous phase liquid, which has densities greater than the water initially released in unsaturated dry soil. Our study shows that the fate of the migration of immiscible contaminants in variably saturated zones can be accurately described, using a unique mathematical conservative model, with different evolution depending on the value of the system’s physical parameters, including the contaminant density, and accurately tracking the evolution of the sharp (shock) contaminant front
The Ecotoxicity Approach as a Tool for Assessing Vermiremediation Effectiveness in Polychlorobiphenyls, Polychlorodibenzo-p-Dioxins and Furans Contaminated Soils
Chemical analyses are inadequate for assessing soil biological quality. Instead, the soil living community can be used both for monitoring and restoring soil health. The aim of this research was to verify vermiremediation efficiency in PCDD/F and PCB contaminated soils from Brescia-Caffaro (Italy), using an ecotoxicity approach. To gauge whether Caffaro soil could sustain a living community, a characterization of the arthropod community was conducted. Earthworms’ suitability for soil bioremediation was assessed applying ecotoxicity tests. Five treatments were set up: 1) contaminated soil; 2) contaminated soil + Eisenia fetida; 3) contaminated soil + Lepidium sativum; 4) contaminated soil + E. fetida + L. sativum, 5) uncontaminated soil + E. fetida. The ecotoxicity tests were: L. sativum germination index and root elongation inhibition, and Folsomia candida survival and reproduction, applied on soil and elutriate on: starter soil (T0), after 56 and 112 days (T56 and T112), the last after water percolation. Soil arthropod community was dominated by Hypogastruridae, Oribatida and, to a lesser degree, Formicidae and Coleoptera larvae. Ecotoxicity tests showed that F. candida reproduction and L. sativum root elongation were more adversely affected by pollutants than survival and germination. The higher soil ecotoxicity at T112 than at T56, suggested higher contaminant bioavailability after water addition. F. candida showed more variability between soil and elutriate than L. sativum. Both bioassays suggested earthworm treatment as the most promising. The importance of selecting different organisms in soil ecotoxicity monitoring, and the role of elutriate like a solid phase complement, was highlighted
Natural surface hydrocarbons and soil faunal biodiversity: A bioremediation perspective
Hydrocarbon pollution threatens aquatic and terrestrial ecosystems globally, but soil fauna in oil-polluted soils has been insufficiently studied. In this research, soil hydrocarbon toxicity was investigated in two natural oil seepage soils in Val D'Agri (Italy) using two different approaches: (i) toxicological tests with Folsomia candida (Collembola) and Eisenia fetida (Oligochaeta) and (ii) analysis of abundance and composition of micro- and meso-fauna. Soil sampling was done along 20 m-transepts starting from the natural oil seepages. Toxicological testing revealed that no exemplars of F. candida survived, whereas specimens of E. fetida not only survived but also increased in weight in soils with higher PAH concentrations, although no reproduction was observed. Analysis on microfauna showed that Nematoda was the most abundant group, with distance from seepages not affecting its abundance. Arthropoda results showed that Acarina, Collembola and Diptera larvae represented the most abundant taxa. The highest divergence in community composition was found between soils situated near seepages and at 5 m and 10 m distance. Arthropoda taxa numbers, total abundance and Acarina were lower in soils with high PAH concentration, while Diptera larvae were not significantly affected. Earthworms, together with Nematoda and Diptera larvae, could therefore represent ideal candidates in PAH degradation studies
Estimation of recharge in mountain hard-rock aquifers based on discrete spring discharge monitoring during base-flow recession
Estimation of aquifer recharge is key to effective groundwater management and protection. In mountain hard-rock aquifers, the average annual discharge of a spring generally reflects the vertical aquifer recharge over the spring catchment. However, the determination of average annual spring discharge requires expensive and challenging field monitoring. A power-law correlation was previously reported in the literature that would allow quantification of the average annual spring discharge starting from only a few discharge measurements in the low-flow season, in a dry summer climate. The correlation is based upon the Maillet model and was previously derived by a 10-year monitoring program of discharge from springs and streams in hard-rock aquifers composed of siliciclastic and calcareous turbidites that did not have well defined hydrogeologic boundaries. In this research, the same correlation was applied to two ophiolitic (peridotitic) hard-rock aquifers in the Northern Apennines (Northern Italy) with well-defined hydrogeologic boundaries and base-outflow springs. The correlation provided a reliable estimate of the average annual spring discharge thus confirming its effectiveness regardless of bedrock lithology. In the two aquifers studied, the measurable annual outputs (i.e. sum of average annual spring discharges) could be assumed equal to the annual inputs (i.e. vertical recharge) based on the clear-cut aquifer boundaries and a quick groundwater circulation inferable from spring water parameters. Thus, in such setting, the aforementioned correlation also provided an estimate of the annual aquifer recharge allowing the assessment of coefficients of infiltration (i.e. ratio between aquifer recharge and total precipitation) ranging between 10 and 20%
Analysis of the saltwater wedge in a coastal karst aquifer with a double conduit network, numerical simulations and sensitivity analysis
We investigate the long-distance salinity in a dual permeability coastal karst aquifer with a double conduit network using a three-dimensional variable-density groundwater flow and multispecies transport SEAWAT model. Sensitivity analyses were used to evaluate the impact of the parameters and boundary conditions on the modeling saltwater wedge in a karstic aquifer situated in the Cuban land territory, including hydraulic conductivity, vertical anisotropy and salinity concentration; both in the conduits network and the fractured medium. These analyses indicated that hydraulic conductivity of the fractured medium and salt concentration were the ones that have a stronger effect on saltwater intrusion in a karstic aquifer. We also show results of the three-dimensional numerical simulations on groundwater salinity for different scenarios with the variabilities of the important parameters and compare results with electric conductivity profiles measured in a well
Hydrogeological behaviour and geochemical features of waters in evaporite-bearing low-permeability successions: A case study in Southern Sicily, Italy
Knowledge about the hydrogeological behaviour of heterogeneous low-permeability media is an important tool when designing anthropogenic works (e.g., landfills) that could potentially have negative impacts on the environment and on people’s health. The knowledge about the biogeochemical processes in these media could prevent “false positives” when studying groundwater quality and possible contamination caused by anthropogenic activities. In this research, we firstly refined knowledge about the groundwater flow field at a representative site where the groundwater flows within an evaporite-bearing low-permeability succession. Hydraulic measurements and tritium analyses demonstrated the coexistence of relatively brief to very prolonged groundwater pathways. The groundwater is recharged by local precipitation, as demonstrated by stable isotopes investigations. However, relatively deep groundwater is clearly linked to very high tritium content rainwater precipitated during the 1950s and 1960s. The deuterium content of some groundwater samples showed unusual values, explained by the interactions between the groundwater and certain gases (H2S and CH4), the presences of which are linked to sulfate-reducing bacteria and methanogenic archaea detected within the saturated medium through biomolecular investigations in the shallow organic reach clayey deposits. In a wider, methodological context, the present study demonstrates that interdisciplinary approaches provide better knowledge about the behaviour of heterogeneous low-permeability media and the meaning of each data type
Ecohydrogeology: The interdisciplinary convergence needed to improve the study and stewardship of springs and other groundwater-dependent habitats, biota, and ecosystems
This essay discusses the need for, advantages and challenges of integrating the scientific disciplines of ecology and hydrogeology in the study of groundwater-dependent ecosystems (GDEs). We provide a definition for ecohydrogeology as \u201ca unifying, synthetic field of study integrating the approaches from the ecological and hydrogeological sciences in the study of groundwater (GW)-related ecosystems, habitats, and organisms to advance science, stewardship, and policy\u201d. We selected specific case studies to illustrate first how hydrogeological approaches can favour in-depth understanding and modelling of springs and crenobiontic (spring-dependent) species distribution, assemblage composition and organization. Second, this essay also examines how taxa and assemblages serve as bioassays and ecosystem indicators to infer hydrogeological aspects of GW flow and discharge, as well as quantitative and qualitative human impacts. We consider both types of features and parameters as ecohydrogeological indicators. The examples presented include topics related to springs and other GDE geomorphological types and classification, GW quality influences on crenobiont distribution, phreatophyte (= plant species the roots of which reach to and into the water table) ecophysiology in relation to water table depth, and flow variability in karstic systems, to nutrient dynamics in relation to dinoflagellate blooms in GDE montane lakes. Conceptual approaches that integrate ecology with hydrogeology include the investigation of GDE distribution and ecology, groundwater-surface water (GW-SW) interactions, and the development of the discipline of ecohydrology. Despite widespread applications, the scientific community still lacks a complete or effective integration of the principles described in the fields of groundwater hydrogeology with ecology, ecophysiology, and environmental biology. Springs are aquatic-wetland-riparian habitats that link shallow subsurface-surface processes and assemblages, often functioning as biodiversity hotspots, ecotones, keystone, and refugial ecosystems, for which coordination between studies of hydrogeology and ecology are both obvious and essential. Over the past century, springs ecosystem ecology has been largely ignored by hydrologists, and, conversely, hydrogeology has been under-emphasized by ecologists. Recent global recognition of the extraordinary biodiversity and socio-cultural significance of springs, coupled with their globally highly threatened conservation status, stimulated this inquiry into how to better integrate hydrogeology with springs ecosystem ecology. Acknowledging the highly threatened status of springs ecosystems around the world, there is an urgent need to integrate and invigorate the union of these disciplines into ecohydrogeology, the study of groundwater-dependent organisms, habitats, ecosystems, and management policy
- …