141 research outputs found

    Structural relaxation and low energy properties of Twisted Bilayer Graphene

    Get PDF
    The structural and electronic properties of twisted bilayer graphene are investigated from first principles and tight binding approach as a function of the twist angle (ranging from the first "magic" angle θ=1.08\theta=1.08^\circ to θ=3.89\theta=3.89^\circ, with the former corresponding to the largest unit cell, comprising 11164 carbon atoms). By properly taking into account the long-range van der Waals interaction, we provide the patterns for the atomic displacements (with respect to the ideal twisted bilayer). The out-of-plane relaxation shows an oscillating ("buckling") behavior, very evident for the smallest angles, with the atoms around the AA stacking regions interested by the largest displacements. The out-of-plane displacements are accompanied by a significant in-plane relaxation, showing a vortex-like pattern, where the vorticity (intended as curl of the displacement field) is reverted when moving from the top to the bottom plane and viceversa. Overall, the atomic relaxation results in the shrinking of the AA stacking regions in favor of the more energetically favorable AB/BA stacking domains. The measured flat bands emerging at the first magic angle can be accurately described only if the atomic relaxations are taken into account. Quite importantly, the experimental gaps separating the flat band manifold from the higher and lower energy bands cannot be reproduced if only in-plane or only out-of-plane relaxations are considered. The stability of the relaxed bilayer at the first magic angle is estimated to be of the order of 0.5-0.9 meV per atom (or 7-10 K). Our calculations shed light on the importance of an accurate description of the vdW interaction and of the resulting atomic relaxation to envisage the electronic structure of this really peculiar kind of vdW bilayers

    Engineering Silicon Nanocrystals: Theoretical study of the effect of Codoping with Boron and Phosphorus

    Full text link
    We show that the optical and electronic properties of nanocrystalline silicon can be efficiently tuned using impurity doping. In particular, we give evidence, by means of ab-initio calculations, that by properly controlling the doping with either one or two atomic species, a significant modification of both the absorption and the emission of light can be achieved. We have considered impurities, either boron or phosphorous (doping) or both (codoping), located at different substitutional sites of silicon nanocrystals with size ranging from 1.1 nm to 1.8 nm in diameter. We have found that the codoped nanocrystals have the lowest impurity formation energies when the two impurities occupy nearest neighbor sites near the surface. In addition, such systems present band-edge states localized on the impurities giving rise to a red-shift of the absorption thresholds with respect to that of undoped nanocrystals. Our detailed theoretical analysis shows that the creation of an electron-hole pair due to light absorption determines a geometry distortion that in turn results in a Stokes shift between adsorption and emission spectra. In order to give a deeper insight in this effect, in one case we have calculated the absorption and emission spectra going beyond the single-particle approach showing the important role played by many-body effects. The entire set of results we have collected in this work give a strong indication that with the doping it is possible to tune the optical properties of silicon nanocrystals.Comment: 14 pages 19 figure

    Interface optical phonons in spheroidal dots: Raman selection rules

    Full text link
    The contribution of interface phonons to the first order Raman scattering in nanocrystals with non spherical geometry is analyzed. Interface optical phonons in the spheroidal geometry are discussed and the corresponding Frohlich-like electron-phonon interaction is reported in the framework of the dielectric continuum approach. It is shown that the interface phonon modes are strongly dependent on the nanocrystal geometry, particularly on the ellipsoid's semi-axis ratio. The new Raman selection rules have revealed that solely interface phonon modes with even angular momentum are allowed to contribute to the first order phonon-assisted scattering of light. On this basis we are able to give an explanation for the observed low frequency shoulders present in the Raman cross-section of several II-VI semiconductor nanostructures.Comment: 8 pages, 2 figure

    A Web Semântica e a Educação

    Get PDF
    Esse artigo discute a construção e aplicação de ontologias parasistemas educacionais baseados na Web. A Web existente hoje com umnúmero exponencial de páginas e de acessos exige uma mudança significativanos modelos de busca e entendimento dos conteúdos disponibilizados baseadoem páginas “estruturadas”, que utilizam ferramentas interativas eautomáticas, onde máquinas participam efetivamente interagindo entre si.Diversos domínios do conhecimento poderão fazer uso deste novo recurso,como sistemas educacionais. Esta “nova” web é denominada Web Semânticae utiliza ontologias para obter uma especificação formal, explícita ecompartilhada de conceitos

    Symbolic-Numeric Algorithms for Computer Analysis of Spheroidal Quantum Dot Models

    Full text link
    A computation scheme for solving elliptic boundary value problems with axially symmetric confining potentials using different sets of one-parameter basis functions is presented. The efficiency of the proposed symbolic-numerical algorithms implemented in Maple is shown by examples of spheroidal quantum dot models, for which energy spectra and eigenfunctions versus the spheroid aspect ratio were calculated within the conventional effective mass approximation. Critical values of the aspect ratio, at which the discrete spectrum of models with finite-wall potentials is transformed into a continuous one in strong dimensional quantization regime, were revealed using the exact and adiabatic classifications.Comment: 6 figures, Submitted to Proc. of The 12th International Workshop on Computer Algebra in Scientific Computing (CASC 2010) Tsakhkadzor, Armenia, September 5 - 12, 201

    Screening in semiconductor nanocrystals: \textit{Ab initio} results and Thomas-Fermi theory

    Full text link
    A first-principles calculation of the impurity screening in Si and Ge nanocrystals is presented. We show that isocoric screening gives results in agreement with both the linear response and the point-charge approximations. Based on the present ab initio results, and by comparison with previous calculations, we propose a physical real-space interpretation of the several contributions to the screening. Combining the Thomas-Fermi theory and simple electrostatics, we show that it is possible to construct a model screening function that has the merit of being of simple physical interpretation. The main point upon which the model is based is that, up to distances of the order of a bond length from the perturbation, the charge response does not depend on the nanocrystal size. We show in a very clear way that the link between the screening at the nanoscale and in the bulk is given by the surface polarization. A detailed discussion is devoted to the importance of local field effects in the screening. Our first-principles calculations and the Thomas-Fermi theory clearly show that in Si and Ge nanocrystals, local field effects are dominated by surface polarization, which causes a reduction of the screening in going from the bulk down to the nanoscale. Finally, the model screening function is compared with recent state-of-the-art ab initio calculations and tested with impurity activation energies

    A Web Semântica e a Educação

    Get PDF
    Esse artigo discute a construção e aplicação de ontologias parasistemas educacionais baseados na Web. A Web existente hoje com umnúmero exponencial de páginas e de acessos exige uma mudança significativanos modelos de busca e entendimento dos conteúdos disponibilizados baseadoem páginas “estruturadas”, que utilizam ferramentas interativas eautomáticas, onde máquinas participam efetivamente interagindo entre si.Diversos domínios do conhecimento poderão fazer uso deste novo recurso,como sistemas educacionais. Esta “nova” web é denominada Web Semânticae utiliza ontologias para obter uma especificação formal, explícita ecompartilhada de conceitos
    corecore