19 research outputs found

    Endophytes from African Rice (Oryza glaberrima L.) Efficiently Colonize Asian Rice (Oryza sativa L.) Stimulating the Activity of Its Antioxidant Enzymes and Increasing the Content of Nitrogen, Carbon, and Chlorophyll.

    Get PDF
    Bacterial endophytes support the adaptation of host plants to harsh environments. In this study, culturable bacterial endophytes were isolated from the African rice Oryza glaberrima L., which is well-adapted to grow with poor external inputs in the tropical region of Mali. Among these, six N-fixer strains were used to inoculate O. glaberrima RAM133 and the Asian rice O. sativa L. cv. Baldo, selected for growth in temperate climates. The colonization efficiency and the N-fixing activity were evaluated and compared for the two rice varieties. Oryza sativa-inoculated plants showed a fairly good colonization efficiency and nitrogenase activity. The inoculation of Oryza sativa with the strains Klebsiella pasteurii BDA134-6 and Phytobacter diazotrophicus BDA59-3 led to the highest nitrogenase activity. In addition, the inoculation of ‘Baldo’ plants with the strain P. diazotrophicus BDA59-3 led to a significant increase in nitrogen, carbon and chlorophyll content. Finally, ‘Baldo’ plants inoculated with Kl. pasteurii BDA134-6 showed the induction of antioxidant enzymes activity and the maintenance of nitrogen-fixation under salt stress as compared to the unstressed controls. As these endophytes efficiently colonize high-yielding crop varieties grown in cold temperate climates, they become good candidates to promote their growth under unfavorable conditions

    Development and validation of a bulk-flow model for staggered labyrinth seals

    No full text
    As well known, the stability assessment of turbomachines is strongly related to internal sealing components. For instance, labyrinth seals are widely used in compressors, steam and gas turbines and pumps to control the clearance leakage between rotating and stationary parts, owing to their simplicity, reliability and tolerance to large thermal and pressure variations. Labyrinth seals working principle consists in reducing the leakage by imposing tortuous passages to the fluid that are effective on dissipating the kinetic energy of the fluid from high-pressure regions to low-pressure regions. Conversely, labyrinth seals could lead to dynamics issues. Therefore, an accurate estimation of their dynamic behavior is very important. In this paper, the experimental results of a long-staggered labyrinth seal will be presented. The results in terms of rotordynamic coefficients and leakage will be discussed as well as the critical assessment of the experimental measurements. Eventually, the experimental data are compared to numerical results obtained with the new bulk-flow model (BFM) introduced in this paper

    Rotor-to-seal rubs in a steam turbine caused by deposits of carbonized oil

    No full text
    Sometimes, deposits of carbonized oil may cause the obstruction of the available radial clearance between shaft and oil deflectors in the area close to oil-film journal bearings of steam turbines. As a result, the friction forces generated by light rotor-to-stator rubs usually cause a shaft thermal bow and changes in the synchronous vibration. Owing to the continuous increase of vibration levels and rub-induced contact forces, the blocking material can be abraded quickly. Therefore, intermittent onsets of high peaks in the shaft vibration may occur also under stable operating conditions. This paper shows a case history in which deposits of carbonized oil caused rubbing phenomena in a steam turbine. A diagnostic method that has allowed the cause of the fault to be identified is described. Besides, comparisons between experimental data and numerical results obtained with a model-based diagnostic method are also shown

    Design and optimization of a Semi-active Suspension Systems for Railway Applications

    No full text
    The present work focused on the application of innovative damping technologies in order to improve railway vehicle performances in terms of dynamic stability and comfort. As a benchmark case-study, the secondary suspension stage was selected and different control techniques were investigated, such as skyhook, dynamic compensation, and sliding mode control. The final aim was to investigate which control schemes are suitable for optimal exploitation of the non-linear behavior of the actuators. The performance improvement achieved by adoption of the semi-active dampers on a standard high-speed train was evaluated in terms of passenger comfort. Different control strategies have been investigated by comparing a simple SISO (single input single output) regulator based on the skyhook damper approach with a centralized regulator. The centralized regulator allows for the estimation of a near optimal set of control forces that minimize car-body accelerations with respect to constraints imposed by limited performance of semi-active actuators. Simulation results show that best results is obtained using a mixed approach that considers the simultaneous applications of model based and feedback compensation control terms

    Numerical modeling of spiral vibrations caused by the presence of brush seals

    No full text
    Clearance is of paramount importance for turbomachinery manufacturers to meet today’s aggressive power output, efficiency, and operational life goals. To minimize leakages, there are various seal types used, and new sealing concepts are in development. Because of their inherent flexibility and compliance, brush seals are capable of significantly reducing the leakage, and allow sufficient geometrical margins to accommodate design and operational variations of turbomachines. Brush seals can be assembled at very tight or zero radial clearance or even with interference on the rotor to minimize the leakage. This means that the risk of contact between the rotor and the seal bristles exists, especially in case of zero clearance or interference. If the contact occurs, a hot-spot develops on the rotor and this may cause the vibration to diverge, resulting in a synchronous instability, the so-called Newkirk effect. The objective of this paper is the development of a numerical model to analyze the dynamic behavior of real turbomachines subject to thermally-induced vibration caused by light-rub of the rotor against brush seals. The model developed in the paper is based on the work of Bachschmid et al. [1]: the dynamics is analyzed in the frequency domain using the standard rotordynamic model, whereas the heat transfer analysis, to calculate the temperature distribution and the associated thermal bow, is studied in the time domain. The contact analysis has been deeply revised, aiming at estimating suitable normal and tangential force and the friction heating generated by the contact

    Experiments on a large flexure pivot journal bearing: Summary of test results and comparison with predictions

    No full text
    Flexure Pivot® Journal Bearings (FPJBs) have typically been used in small high-speed applications such as Integrally Geared Compressors (IGCs) and multistage high-speed compressors, where the temperature management and the rotordynamic stability of the machine are the main targets. Nevertheless, the need for high-speed applications may also be applicable to large compressors and for this reason a large 280mm diameter four-pad FPJB with L/D=0.7 has been designed, built and tested by the Authors. The test facility is a novel rig, set up at the University of Pisa, that includes a floating test bearing and a rigid rotor supported by two stiff rolling element bearings. Both static and dynamic loads are applied through hydraulic actuators, capable of 270kN static and 40kN overall dynamic load. The instrumentation can measure all the relevant test boundary conditions as well as the static and dynamic quantities that characterize the bearing performance. This paper presents the results from a test campaign conceived to explore not only the design conditions (7000rpm rotational speed and 0.75MPa unit load) but also the sensitivity to the unit load (from 0.2MPa minimum load up to 2.2MPa maximum load) as well as the oil flow. The results are discussed and compared with predictions from an existing numerical code

    On the Thermodynamic Process in the Bulk-Flow Model for the Estimation of the Dynamic Coefficients of Labyrinth Seals

    No full text
    The impact of sealing equipment on the stability of turbomachineries is a crucial topic because the power generation market is continuously requiring high rotational speed and high performance, leading to the clearance reduction in the seals. The accurate characterization of the rotordynamic coefficients generated by the seals is pivotal to mitigate instability issues. In the paper, the authors propose an improvement of the state-of-the-art one-control volume (1CV) bulk-flow model (Childs and Scharrer, 1986, "An Iwatsubo-Based Solution for Labyrinth Seals: Comparison to Experimental Results," ASME J. Eng. Gas Turbines Power, 108(2), pp. 325-331) by considering the energy equation in the steady-state problem. Thus, real gas properties can be evaluated in a more accurate way because the enthalpy variation, expected through the seal cavities, is evaluated in the model. The authors assume that the enthalpy is not a function of the clearance perturbation; therefore, the energy equation is considered only in the steady-state problem. The results of experimental tests of a 14 teeth-on-stator (TOS) labyrinth seal, performed in the high-pressure seal test rig owned by GE Oil&Gas, are presented in the paper. Positive and negative preswirl ratios are used in the experimental tests to investigate the effect of the preswirl on the rotordynamic coefficients. Overall, by considering the energy equation, a better numerical estimation of the rotordynamic coefficients for the tests with the negative preswirl ratio has been obtained (as it results from the comparison with the experiments). Finally, the numerical results are compared with a reference bulk-flow model proposed by Thorat and Childs (2010, "Predicted Rotordynamic Behavior of a Labyrinth Seal as Rotor Surface Speed Approaches Mach 1," ASME J. Eng. Gas Turbines Power, 132(11), p. 112504), highlighting the improvement obtained
    corecore