86,058 research outputs found
Turbulent mixing of a slightly supercritical Van der Waals fluid at Low-Mach number
Supercritical fluids near the critical point are characterized by liquid-like
densities and gas-like transport properties. These features are purposely
exploited in different contexts ranging from natural products
extraction/fractionation to aerospace propulsion. Large part of studies
concerns this last context, focusing on the dynamics of supercritical fluids at
high Mach number where compressibility and thermodynamics strictly interact.
Despite the widespread use also at low Mach number, the turbulent mixing
properties of slightly supercritical fluids have still not investigated in
detail in this regime. This topic is addressed here by dealing with Direct
Numerical Simulations (DNS) of a coaxial jet of a slightly supercritical Van
der Waals fluid. Since acoustic effects are irrelevant in the Low Mach number
conditions found in many industrial applications, the numerical model is based
on a suitable low-Mach number expansion of the governing equation. According to
experimental observations, the weakly supercritical regime is characterized by
the formation of finger-like structures-- the so-called ligaments --in the
shear layers separating the two streams. The mechanism of ligament formation at
vanishing Mach number is extracted from the simulations and a detailed
statistical characterization is provided. Ligaments always form whenever a high
density contrast occurs, independently of real or perfect gas behaviors. The
difference between real and perfect gas conditions is found in the ligament
small-scale structure. More intense density gradients and thinner interfaces
characterize the near critical fluid in comparison with the smoother behavior
of the perfect gas. A phenomenological interpretation is here provided on the
basis of the real gas thermodynamics properties.Comment: Published on Physics of Fluid
Understanding the nucleation mechanisms of Carbon Nanotubes in catalytic Chemical Vapor Deposition
The nucleation of carbon caps on small nickel clusters is studied using a
tight binding model coupled to grand canonical Monte Carlo simulations. It
takes place in a well defined carbon chemical potential range, when a critical
concentration of surface carbon atoms is reached. The solubility of carbon in
the outermost Ni layers, that depends on the initial, crystalline or
disordered, state of the catalyst and on the thermodynamic conditions, is
therefore a key quantity to control the nucleation
Structured Prediction of Sequences and Trees using Infinite Contexts
Linguistic structures exhibit a rich array of global phenomena, however
commonly used Markov models are unable to adequately describe these phenomena
due to their strong locality assumptions. We propose a novel hierarchical model
for structured prediction over sequences and trees which exploits global
context by conditioning each generation decision on an unbounded context of
prior decisions. This builds on the success of Markov models but without
imposing a fixed bound in order to better represent global phenomena. To
facilitate learning of this large and unbounded model, we use a hierarchical
Pitman-Yor process prior which provides a recursive form of smoothing. We
propose prediction algorithms based on A* and Markov Chain Monte Carlo
sampling. Empirical results demonstrate the potential of our model compared to
baseline finite-context Markov models on part-of-speech tagging and syntactic
parsing
Relationship Between the Azimuthal Dependencies of Nuclear Modification Factor and Ridge Yield
The azimuthal angular dependence of the nuclear modification factor
R_{AA}(p_T, phi,N_{part}) recently obtained by PHENIX is related at low p_T to
the trigger phi dependence of the ridge yield as measured by STAR in a
framework in which the azimuthal anisotropy is driven by semihard scattering
near the surface. Careful consideration of the initial geometry leads to the
determination of a surface segment in which the production of semihard partons
are responsible for the phi dependence of the inclusive distribution on the one
hand, and for the angular correlation in ridge phenomenology on the other. With
v_2 also being well reproduced along with R_{AA} and ridge yield, all relevant
phi dependencies in heavy-ion collisions can now be understood in a unified
description that emphasizes the ridge production whether or not a trigger is
used.Comment: This expanded version has additional discussions that render the
paper more readable without change of substance. It is to be published in
Phys. Rev.
- …