7 research outputs found

    Multiple-arm dielectric connections: principles of operation and diffraction regulations of high-order waves

    Full text link
    Описывается более чем полувековая история познания свойств и углубления понимания волновых процессов в многоплечих диэлектрических соединениях (МДС). Явление, лежащее в основе принципа действия этих МДС, было позднее признано научным открытием (диплом № 79 от 17.03.1970) [1]. Необычность «явления синфазного и направленного разветвления энергии» тогда была объяснена наличием у МДС особого «плеча», которое отражает физическую возможность эффективного (практически полного) излучения из МДС в определенных режимах его работы (при практически полном отсутствии излучения в других режимах). В последние годы в ходе познания механизмов дифракции волн в диэлектрических структурах (смотри литературу к докладу [2]) стало ясно, что это плечо правильно было бы назвать «дифракционным»

    Large introns in relation to alternative splicing and gene evolution: a case study of Drosophila bruno-3

    Get PDF
    Background: Alternative splicing (AS) of maturing mRNA can generate structurally and functionally distinct transcripts from the same gene. Recent bioinformatic analyses of available genome databases inferred a positive correlation between intron length and AS. To study the interplay between intron length and AS empirically and in more detail, we analyzed the diversity of alternatively spliced transcripts (ASTs) in the Drosophila RNA-binding Bruno-3 (Bru-3) gene. This gene was known to encode thirteen exons separated by introns of diverse sizes, ranging from 71 to 41,973 nucleotides in D. melanogaster. Although Bru-3's structure is expected to be conducive to AS, only two ASTs of this gene were previously described. Results: Cloning of RT-PCR products of the entire ORF from four species representing three diverged Drosophila lineages provided an evolutionary perspective, high sensitivity, and long-range contiguity of splice choices currently unattainable by high-throughput methods. Consequently, we identified three new exons, a new exon fragment and thirty-three previously unknown ASTs of Bru-3. All exon-skipping events in the gene were mapped to the exons surrounded by introns of at least 800 nucleotides, whereas exons split by introns of less than 250 nucleotides were always spliced contiguously in mRNA. Cases of exon loss and creation during Bru-3 evolution in Drosophila were also localized within large introns. Notably, we identified a true de novo exon gain: exon 8 was created along the lineage of the obscura group from intronic sequence between cryptic splice sites conserved among all Drosophila species surveyed. Exon 8 was included in mature mRNA by the species representing all the major branches of the obscura group. To our knowledge, the origin of exon 8 is the first documented case of exonization of intronic sequence outside vertebrates. Conclusion: We found that large introns can promote AS via exon-skipping and exon turnover during evolution likely due to frequent errors in their removal from maturing mRNA. Large introns could be a reservoir of genetic diversity, because they have a greater number of mutable sites than short introns. Taken together, gene structure can constrain and/or promote gene evolution

    F

    No full text
    corecore