7,814 research outputs found

    WSRT Faraday tomography of the Galactic ISM at \lambda \sim 0.86 m

    Get PDF
    We investigate the distribution and properties of Faraday rotating and synchrotron emitting regions in the Galactic ISM in the direction of the Galactic anti-centre. We apply Faraday tomography to a radio polarization dataset that we obtained with the WSRT. We developed a new method to calculate a linear fit to periodic data, which we use to determine rotation measures from our polarization angle data. From simulations of a Faraday screen + noise we could determine how compatible the data are with Faraday screens. An unexpectedly large fraction of 14% of the lines-of-sight in our dataset show an unresolved main component in the Faraday depth spectrum. For lines-of-sight with a single unresolved component we demonstrate that a Faraday screen in front of a synchrotron emitting region that contains a turbulent magnetic field component can explain the data.Comment: 5 pages, 5 figures. Accepted for publication as a Letter to the Editor in A&

    Motion of a sphere through an aging system

    Full text link
    We have investigated the drag on a sphere falling through a clay suspension that has a yield stress and exhibits rheological aging. The drag force increases with both speed and the rest time between preparation of the system and the start of the experiment, but there exists a nonzero minimum speed below which steady motion is not possible. We find that only a very thin layer of material around the sphere is fluidized when it moves, while the rest of suspension is deformed elastically. This is in marked contrast to what is found for yield-stress fluids that do not age.Comment: latex, 4 figure

    On hyperovals of polar spaces

    Get PDF
    We derive lower and upper bounds for the size of a hyperoval of a finite polar space of rank 3. We give a computer-free proof for the uniqueness, up to isomorphism, of the hyperoval of size 126 of H(5, 4) and prove that the near hexagon E-3 has up to isomorphism a unique full embedding into the dual polar space DH(5, 4)

    Response of thin-film SQUIDs to applied fields and vortex fields: Linear SQUIDs

    Full text link
    In this paper we analyze the properties of a dc SQUID when the London penetration depth \lambda is larger than the superconducting film thickness d. We present equations that govern the static behavior for arbitrary values of \Lambda = \lambda^2/d relative to the linear dimensions of the SQUID. The SQUID's critical current I_c depends upon the effective flux \Phi, the magnetic flux through a contour surrounding the central hole plus a term proportional to the line integral of the current density around this contour. While it is well known that the SQUID inductance depends upon \Lambda, we show here that the focusing of magnetic flux from applied fields and vortex-generated fields into the central hole of the SQUID also depends upon \Lambda. We apply this formalism to the simplest case of a linear SQUID of width 2w, consisting of a coplanar pair of long superconducting strips of separation 2a, connected by two small Josephson junctions to a superconducting current-input lead at one end and by a superconducting lead at the other end. The central region of this SQUID shares many properties with a superconducting coplanar stripline. We calculate magnetic-field and current-density profiles, the inductance (including both geometric and kinetic inductances), magnetic moments, and the effective area as a function of \Lambda/w and a/w.Comment: 18 pages, 20 figures, revised for Phys. Rev. B, the main revisions being to denote the effective flux by \Phi rather than

    LOFAR: A new radio telescope for low frequency radio observations: Science and project status

    Full text link
    LOFAR, the Low Frequency Array, is a large radio telescope consisting about 100 soccer field sized antenna stations spread over a region of 400 km in diameter. It will operate in the frequency range from ~10 to 240 MHz, with a resolution at 240 MHz of better than an arcsecond. Its superb sensitivity will allow for a broad range of astrophysical studies. In this contribution we first discuss four major areas of astrophysical research in which LOFAR will undoubtedly make important contributions: reionisation, distant galaxies and AGNs, transient radio sources and cosmic rays. Subsequently, we will discuss the technical concept of the instrument and the status of the LOFAR projectComment: 8 pages, 2 figures, to appear in the proceedings of the XXI Texas Symposium on Relativistic Astrophysics held on December 9--13 2002, in Florence, Ital

    Mircorheology and jamming in a yield-stress fluid

    Get PDF
    Abstract We study the onset of a yield stress in a polymer microgel dispersion using a combination of particle-tracking microrheology and shear rheometry. On the bulk scale, the dispersion changes from a predominantly viscous fluid to a stiff elastic gel as the concentration of the microgel particles increases. On the microscopic scale, the tracer particles see two distinct microrheological environments over a range of concentrations-one being primarily viscous, the other primarily elastic. The fraction of the material that is elastic on the microscale increases from zero to one as the concentration increases. Our results indicate that the yield stress appears as the result of jamming of the microgel particles, and we infer a model for the small-scale structure and interactions within the dispersion and their relationship to the bulk viscoelastic properties
    corecore