68 research outputs found

    Interactions and thermoelectric effects in a parallel-coupled double quantum dot

    Get PDF
    We investigate the nonequilibrium transport properties of a double quantum dot system connected in parallel to two leads, including intradot electron-electron interaction. In the absence of interactions the system supports a bound state in the continuum. This state is revealed as a Fano antiresonance in the transmission when the energy levels of the dots are detuned. Using the Keldysh nonequilibrium Green's function formalism, we find that the occurrence of the Fano antiresonance survives in the presence of Coulomb repulsion. We give precise predictions for the experimental detection of bound states in the continuum. First, we calculate the differential conductance as a function of the applied voltage and the dot level detuning and find that crossing points in the diamond structure are revealed as minima due to the transmission antiresonances. Second, we determine the thermoelectric current in response to an applied temperature bias. In the linear regime, quantum interference gives rise to sharp peaks in the thermoelectric conductance. Remarkably, we find interaction induced strong current nonlinearities for large thermal gradients that may lead to several nontrivial zeros in the thermocurrent. The latter property is especially attractive for thermoelectric applications.Comment: 9 pages, 8 figure

    Lattice thermal conductivity of graphene nanostructures

    Get PDF
    Non-equilibrium molecular dynamics is used to investigate the heat current due to the atomic lattice vibrations in graphene nanoribbons and nanorings under a thermal gradient. We consider a wide range of temperature, nanoribbon widths up to 6nm and the effect of moderate edge disorder. We find that narrow graphene nanorings can efficiently suppress the lattice thermal conductivity at low temperatures (~100K), as compared to nanoribbons of the same width. Remarkably, rough edges do not appear to have a large impact on lattice energy transport through graphene nanorings while nanoribbons seem more affected by imperfections. Furthermore, we demonstrate that the effects of hydrogen-saturated edges can be neglected in these graphene nanostructures

    Shape oscillation of a rotating Bose-Einstein condensate

    Full text link
    We present a theoretical and experimental analysis of the transverse monopole mode of a fast rotating Bose-Einstein condensate. The condensate's rotation frequency is similar to the trapping frequency and the effective confinement is only ensured by a weak quartic potential. We show that the non-harmonic character of the potential has a clear influence on the mode frequency, thus making the monopole mode a precise tool for the investigation of the fast rotation regime

    Interferometric detection of a single vortex in a dilute Bose-Einstein condensate

    Full text link
    Using two radio frequency pulses separated in time we perform an amplitude division interference experiment on a rubidium Bose-Einstein condensate. The presence of a quantized vortex, which is nucleated by stirring the condensate with a laser beam, is revealed by a dislocation in the fringe pattern.Comment: 4 pages, 4 figure

    Quadrupole Oscillation of a Single-Vortex Condensate: Evidence for Kelvin Modes

    Full text link
    We study the two transverse quadrupole modes of a cigar-shaped Bose-Einstein condensate with a single centered vortex. We show that the counter-rotating mode is more strongly damped than in the absence of a vortex, whereas the co-rotating mode is not affected appreciably by the vortex. We interpret this result as a decay of the counter-rotating quadrupole mode into two excitations of the vortex line, the so-called Kelvin modes. This is supported by direct observation of the wiggling vortex line.Comment: 4 pages, 3 figure

    Kelvin Modes of a fast rotating Bose-Einstein Condensate

    Full text link
    Using the concept of diffused vorticity and the formalism of rotational hydrodynamics we calculate the eigenmodes of a harmonically trapped Bose-Einstein condensate containing an array of quantized vortices. We predict the occurrence of a new branch of anomalous excitations, analogous to the Kelvin modes of the single vortex dynamics. Special attention is devoted to the excitation of the anomalous scissors mode.Comment: 7 pages, 3 figures, submitted to Phys. Rev.

    Diffused vorticity approach to the oscillations of a rotating Bose-Einstein condensate confined in a harmonic plus quartic trap

    Full text link
    The collective modes of a rotating Bose-Einstein condensate confined in an attractive quadratic plus quartic trap are investigated. Assuming the presence of a large number of vortices we apply the diffused vorticity approach to the system. We then use the sum rule technique for the calculation of collective frequencies, comparing the results with the numerical solution of the linearized hydrodynamic equations. Numerical solutions also show the existence of low-frequency multipole modes which are interpreted as vortex oscillations.Comment: 10 pages, 4 figure

    Phase field approach to optimal packing problems and related Cheeger clusters

    Full text link
    In a fixed domain of RN\Bbb{R}^N we study the asymptotic behaviour of optimal clusters associated to α\alpha-Cheeger constants and natural energies like the sum or maximum: we prove that, as the parameter α\alpha converges to the "critical" value (N−1N)+\Big (\frac{N-1}{N}\Big ) _+, optimal Cheeger clusters converge to solutions of different packing problems for balls, depending on the energy under consideration. As well, we propose an efficient phase field approach based on a multiphase Gamma convergence result of Modica-Mortola type, in order to compute α\alpha-Cheeger constants, optimal clusters and, as a consequence of the asymptotic result, optimal packings. Numerical experiments are carried over in two and three space dimensions

    Collective modes and the broken symmetry of a rotating attractive Bose gas in an anharmonic trap

    Full text link
    We study the rotational properties of an attractively interacting Bose gas in a quadratic + quartic potential. The low-lying modes of both rotational ground state configurations, namely the vortex and the center of mass rotating states, are solved. The vortex excitation spectrum is positive for weak interactions but the lowest modes decrease rapidly to negative values when the interactions become stronger. The broken rotational symmetry involved in the center of mass rotating state induces the appearance of an extra zero-energy mode in the Bogoliubov spectrum. The excitations of the center of mass rotational state also demonstrate the coupling between the center of mass and relative motions.Comment: 4 pages, 3 eps figures (2 in color) v2: changes in Title, all figures, in text (especially in Sec III) and in Reference
    • 

    corecore