68 research outputs found
Interactions and thermoelectric effects in a parallel-coupled double quantum dot
We investigate the nonequilibrium transport properties of a double quantum
dot system connected in parallel to two leads, including intradot
electron-electron interaction. In the absence of interactions the system
supports a bound state in the continuum. This state is revealed as a Fano
antiresonance in the transmission when the energy levels of the dots are
detuned. Using the Keldysh nonequilibrium Green's function formalism, we find
that the occurrence of the Fano antiresonance survives in the presence of
Coulomb repulsion. We give precise predictions for the experimental detection
of bound states in the continuum. First, we calculate the differential
conductance as a function of the applied voltage and the dot level detuning and
find that crossing points in the diamond structure are revealed as minima due
to the transmission antiresonances. Second, we determine the thermoelectric
current in response to an applied temperature bias. In the linear regime,
quantum interference gives rise to sharp peaks in the thermoelectric
conductance. Remarkably, we find interaction induced strong current
nonlinearities for large thermal gradients that may lead to several nontrivial
zeros in the thermocurrent. The latter property is especially attractive for
thermoelectric applications.Comment: 9 pages, 8 figure
Lattice thermal conductivity of graphene nanostructures
Non-equilibrium molecular dynamics is used to investigate the heat current
due to the atomic lattice vibrations in graphene nanoribbons and nanorings
under a thermal gradient. We consider a wide range of temperature, nanoribbon
widths up to 6nm and the effect of moderate edge disorder. We find that narrow
graphene nanorings can efficiently suppress the lattice thermal conductivity at
low temperatures (~100K), as compared to nanoribbons of the same width.
Remarkably, rough edges do not appear to have a large impact on lattice energy
transport through graphene nanorings while nanoribbons seem more affected by
imperfections. Furthermore, we demonstrate that the effects of
hydrogen-saturated edges can be neglected in these graphene nanostructures
Shape oscillation of a rotating Bose-Einstein condensate
We present a theoretical and experimental analysis of the transverse monopole
mode of a fast rotating Bose-Einstein condensate. The condensate's rotation
frequency is similar to the trapping frequency and the effective confinement is
only ensured by a weak quartic potential. We show that the non-harmonic
character of the potential has a clear influence on the mode frequency, thus
making the monopole mode a precise tool for the investigation of the fast
rotation regime
Interferometric detection of a single vortex in a dilute Bose-Einstein condensate
Using two radio frequency pulses separated in time we perform an amplitude
division interference experiment on a rubidium Bose-Einstein condensate. The
presence of a quantized vortex, which is nucleated by stirring the condensate
with a laser beam, is revealed by a dislocation in the fringe pattern.Comment: 4 pages, 4 figure
Quadrupole Oscillation of a Single-Vortex Condensate: Evidence for Kelvin Modes
We study the two transverse quadrupole modes of a cigar-shaped Bose-Einstein
condensate with a single centered vortex. We show that the counter-rotating
mode is more strongly damped than in the absence of a vortex, whereas the
co-rotating mode is not affected appreciably by the vortex. We interpret this
result as a decay of the counter-rotating quadrupole mode into two excitations
of the vortex line, the so-called Kelvin modes. This is supported by direct
observation of the wiggling vortex line.Comment: 4 pages, 3 figure
Kelvin Modes of a fast rotating Bose-Einstein Condensate
Using the concept of diffused vorticity and the formalism of rotational
hydrodynamics we calculate the eigenmodes of a harmonically trapped
Bose-Einstein condensate containing an array of quantized vortices. We predict
the occurrence of a new branch of anomalous excitations, analogous to the
Kelvin modes of the single vortex dynamics. Special attention is devoted to the
excitation of the anomalous scissors mode.Comment: 7 pages, 3 figures, submitted to Phys. Rev.
Diffused vorticity approach to the oscillations of a rotating Bose-Einstein condensate confined in a harmonic plus quartic trap
The collective modes of a rotating Bose-Einstein condensate confined in an
attractive quadratic plus quartic trap are investigated. Assuming the presence
of a large number of vortices we apply the diffused vorticity approach to the
system. We then use the sum rule technique for the calculation of collective
frequencies, comparing the results with the numerical solution of the
linearized hydrodynamic equations. Numerical solutions also show the existence
of low-frequency multipole modes which are interpreted as vortex oscillations.Comment: 10 pages, 4 figure
Phase field approach to optimal packing problems and related Cheeger clusters
In a fixed domain of we study the asymptotic behaviour of optimal
clusters associated to -Cheeger constants and natural energies like the
sum or maximum: we prove that, as the parameter converges to the
"critical" value , optimal Cheeger clusters
converge to solutions of different packing problems for balls, depending on the
energy under consideration. As well, we propose an efficient phase field
approach based on a multiphase Gamma convergence result of Modica-Mortola type,
in order to compute -Cheeger constants, optimal clusters and, as a
consequence of the asymptotic result, optimal packings. Numerical experiments
are carried over in two and three space dimensions
Collective modes and the broken symmetry of a rotating attractive Bose gas in an anharmonic trap
We study the rotational properties of an attractively interacting Bose gas in
a quadratic + quartic potential. The low-lying modes of both rotational ground
state configurations, namely the vortex and the center of mass rotating states,
are solved. The vortex excitation spectrum is positive for weak interactions
but the lowest modes decrease rapidly to negative values when the interactions
become stronger. The broken rotational symmetry involved in the center of mass
rotating state induces the appearance of an extra zero-energy mode in the
Bogoliubov spectrum. The excitations of the center of mass rotational state
also demonstrate the coupling between the center of mass and relative motions.Comment: 4 pages, 3 eps figures (2 in color) v2: changes in Title, all
figures, in text (especially in Sec III) and in Reference
- âŠ