49 research outputs found

    The investigation of acute optic neuritis: a review and proposed protocol

    Full text link

    Improvement of mechanical strength of iron ore pellets using raw and activated bentonites as binders

    No full text
    In this study, sodium, calcium, and mixed bentonite samples were used as binders in the pelletizing fine iron ore concentrate obtained from the Divrigi Iron Ore Concentration Plant in Turkey. In the pelletizing tests, sodium bentonite sample was used as received and after upgrading process. Additionally, the calcium bentonite sample required activation by sodium bicarbonate while the mixed bentonites sample was used untreated and as well as activated. The pellets produced were tested for compressive strengths, drop number, and porosity in order to characterize the pellets. The results showed that untreated and upgraded sodium bentonite samples provided relatively stronger pellets compared to calcium and the mixed type bentonite samples needed activation with sodium bicarbonate to increase the strength of the pellets. Based on the results of the drop number, compressive strengths, and porosity, it is possible to make pellets which meet the standards by adequate addition of type and amount of bentonite

    Simultaneous purification and modification process for organobentonite production

    No full text
    Bentonites are commonly subjected to a water and energy intensive purification process in order to obtain high-grade montmorillonite, prior to modification to suit technological needs. In this study, the purification and modification processes were combined in order to minimize costs. A method for the production of organobentonite from roughly purified Na-bentonite from Resadiye, Turkey, was proposed with a quaternary alkylammonium salt hexadecyl trimethyl ammonium bromide. Further purification and ion exchange reactions were simultaneous within a centrifugal separation process, followed by the removal of excess modifier agent using the flotation method. The parameters of centrifugal force, feed solid content for Falcon concentrator and modification time, and the amount of alcohol for ion exchange reactions were optimized. Ammonium intercalated organoclays were characterized by X-ray diffraction analysis, thermogravimetric analysis, and swelling tests in organic liquids. An optimum flow sheet for the simultaneous purification and modification process yielding a 97% pure organobentonite with a 2.02 nm basal spacing was developed. (C) 2014 Elsevier B.V. All rights reserved

    Rheological, Electrokinetic, and Morphological Characterization of Alginate-Bentonite Biocomposites

    No full text
    We prepared biocomposite gel dispersions involving sodium alginate (Na-Alg) and calcium bentonite (Ca-B) with various solid concentrations and characterized their rheological, electrokinetic, and morphological properties. The flow properties, such as the apparent and plastic viscosities, shear stress, and yield value point, changed with increasing clay dosage. The viscosities of the homogeneous dispersions were represented by the Herschel-Bulkley model. The zeta-potential results were examined in the light of different characterization methods (X-ray diffraction, Fourier transform infrared spectroscopy, and atomic force microscopy) to understand the interactions between the Na and Ca ions of the alginate biopolymer and bentonite clay. A plausible structural model for the alginate-bentonite composite gel, known as the egg-box model, is proposed. The presence of Ca ions in the Ca-B partially crosslinked Na-Alg may be regarded as an excellent example of a self-assembling process. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci 122: 19-28, 201
    corecore