43 research outputs found

    Cayley modification for strongly stable path-integral and ring-polymer molecular dynamics

    Get PDF
    Path-integral-based molecular dynamics (MD) simulations are widely used for the calculation of numerically exact quantum Boltzmann properties and approximate dynamical quantities. A nearly universal feature of MD numerical integration schemes for equations of motion based on imaginary-time path integrals is the use of harmonic normal modes for the exact evolution of the free ring-polymer positions and momenta. In this work, we demonstrate that this standard practice creates numerical artifacts. In the context of conservative (i.e., microcanonical) equations of motion, it leads to numerical instability. In the context of thermostated (i.e., canonical) equations of motion, it leads to nonergodicity of the sampling. These pathologies are generally proven to arise at integration time steps that depend only on the system temperature and the number of ring-polymer beads, and they are numerically demonstrated for the cases of conventional ring-polymer MD (RPMD) and thermostated RPMD (TRPMD). Furthermore, it is demonstrated that these numerical artifacts are removed via replacement of the exact free ring-polymer evolution with a second-order approximation based on the Cayley transform. The Cayley modification introduced here can immediately be employed with almost every existing integration scheme for path-integral-based MD—including path-integral MD (PIMD), RPMD, TRPMD, and centroid MD—providing strong symplectic stability and ergodicity to the numerical integration, at no penalty in terms of computational cost, algorithmic complexity, or accuracy of the overall MD time step. Furthermore, it is shown that the improved numerical stability of the Cayley modification allows for the use of larger MD time steps. We suspect that the Cayley modification will therefore find useful application in many future path-integral-based MD simulations

    Cayley modification for strongly stable path-integral and ring-polymer molecular dynamics

    Get PDF
    Path-integral-based molecular dynamics (MD) simulations are widely used for the calculation of numerically exact quantum Boltzmann properties and approximate dynamical quantities. A nearly universal feature of MD numerical integration schemes for equations of motion based on imaginary-time path integrals is the use of harmonic normal modes for the exact evolution of the free ring-polymer positions and momenta. In this work, we demonstrate that this standard practice creates numerical artifacts. In the context of conservative (i.e., microcanonical) equations of motion, it leads to numerical instability. In the context of thermostated (i.e., canonical) equations of motion, it leads to nonergodicity of the sampling. These pathologies are generally proven to arise at integration time steps that depend only on the system temperature and the number of ring-polymer beads, and they are numerically demonstrated for the cases of conventional ring-polymer MD (RPMD) and thermostated RPMD (TRPMD). Furthermore, it is demonstrated that these numerical artifacts are removed via replacement of the exact free ring-polymer evolution with a second-order approximation based on the Cayley transform. The Cayley modification introduced here can immediately be employed with almost every existing integration scheme for path-integral-based MD—including path-integral MD (PIMD), RPMD, TRPMD, and centroid MD—providing strong symplectic stability and ergodicity to the numerical integration, at no penalty in terms of computational cost, algorithmic complexity, or accuracy of the overall MD time step. Furthermore, it is shown that the improved numerical stability of the Cayley modification allows for the use of larger MD time steps. We suspect that the Cayley modification will therefore find useful application in many future path-integral-based MD simulations

    Residual Finiteness Growths of Virtually Special Groups

    Get PDF
    Let GG be a virtually special group. Then the residual finiteness growth of GG is at most linear. This result cannot be found by embedding GG into a special linear group. Indeed, the special linear group SLk(Z)\text{SL}_k(\mathbb{Z}), for k>2k > 2, has residual finiteness growth nk−1n^{k-1}.Comment: Updated version contains minor changes incorporating referee comments/suggestions and a simplified proof of Lemma 4.

    A Paradox of State-Dependent Diffusion and How to Resolve It

    Full text link
    Consider a particle diffusing in a confined volume which is divided into two equal regions. In one region the diffusion coefficient is twice the value of the diffusion coefficient in the other region. Will the particle spend equal proportions of time in the two regions in the long term? Statistical mechanics would suggest yes, since the number of accessible states in each region is presumably the same. However, another line of reasoning suggests that the particle should spend less time in the region with faster diffusion, since it will exit that region more quickly. We demonstrate with a simple microscopic model system that both predictions are consistent with the information given. Thus, specifying the diffusion rate as a function of position is not enough to characterize the behaviour of a system, even assuming the absence of external forces. We propose an alternative framework for modelling diffusive dynamics in which both the diffusion rate and equilibrium probability density for the position of the particle are specified by the modeller. We introduce a numerical method for simulating dynamics in our framework that samples from the equilibrium probability density exactly and is suitable for discontinuous diffusion coefficients.Comment: 21 pages, 6 figures. Second round of revisions. This is the version that will appear in Proc Roy So

    Geometric analysis of noisy perturbations to nonholonomic constraints

    Full text link
    We propose two types of stochastic extensions of nonholonomic constraints for mechanical systems. Our approach relies on a stochastic extension of the Lagrange-d'Alembert framework. We consider in details the case of invariant nonholonomic systems on the group of rotations and on the special Euclidean group. Based on this, we then develop two types of stochastic deformations of the Suslov problem and study the possibility of extending to the stochastic case the preservation of some of its integrals of motion such as the Kharlamova or Clebsch-Tisserand integrals

    Discrete Variational Optimal Control

    Full text link
    This paper develops numerical methods for optimal control of mechanical systems in the Lagrangian setting. It extends the theory of discrete mechanics to enable the solutions of optimal control problems through the discretization of variational principles. The key point is to solve the optimal control problem as a variational integrator of a specially constructed higher-dimensional system. The developed framework applies to systems on tangent bundles, Lie groups, underactuated and nonholonomic systems with symmetries, and can approximate either smooth or discontinuous control inputs. The resulting methods inherit the preservation properties of variational integrators and result in numerically robust and easily implementable algorithms. Several theoretical and a practical examples, e.g. the control of an underwater vehicle, will illustrate the application of the proposed approach.Comment: 30 pages, 6 figure
    corecore