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ABSTRACT
Path-integral-based molecular dynamics (MD) simulations are widely used for the calculation of numerically exact quantum Boltzmann
properties and approximate dynamical quantities. A nearly universal feature of MD numerical integration schemes for equations of motion
based on imaginary-time path integrals is the use of harmonic normal modes for the exact evolution of the free ring-polymer positions and
momenta. In this work, we demonstrate that this standard practice creates numerical artifacts. In the context of conservative (i.e., micro-
canonical) equations of motion, it leads to numerical instability. In the context of thermostated (i.e., canonical) equations of motion, it leads
to nonergodicity of the sampling. These pathologies are generally proven to arise at integration time steps that depend only on the system
temperature and the number of ring-polymer beads, and they are numerically demonstrated for the cases of conventional ring-polymer MD
(RPMD) and thermostated RPMD (TRPMD). Furthermore, it is demonstrated that these numerical artifacts are removed via replacement
of the exact free ring-polymer evolution with a second-order approximation based on the Cayley transform. The Cayley modification intro-
duced here can immediately be employed with almost every existing integration scheme for path-integral-based MD—including path-integral
MD (PIMD), RPMD, TRPMD, and centroid MD—providing strong symplectic stability and ergodicity to the numerical integration, at no
penalty in terms of computational cost, algorithmic complexity, or accuracy of the overall MD time step. Furthermore, it is shown that the
improved numerical stability of the Cayley modification allows for the use of larger MD time steps. We suspect that the Cayley modification
will therefore find useful application in many future path-integral-based MD simulations.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5120282., s

I. INTRODUCTION

Feynman’s path-integral formulation of quantum statistical
mechanics1 offers powerful and widely used strategies for includ-
ing nuclear quantum effects in complex chemical systems. These
strategies are based on the observation that the quantum Boltzmann
statistical mechanics of a quantum system is exactly reproduced by
the classical Boltzmann statistical mechanics of an isomorphic ring-
polymer system.2 For the numerically exact calculation of quan-
tum Boltzmann statistical properties, the classical Boltzmann dis-
tribution of the ring-polymer system can be sampled using Monte
Carlo3 (i.e., path-integral Monte Carlo, or PIMC) or molecular

dynamics4 (PIMD). For the approximate calculation of dynamical
quantities, such as reaction rates,5–7 diffusion coefficients,8–10 and
absorption spectra,9,11–14 the Newtonian dynamics of the classical
isomorphic system can be numerically integrated as a model for the
real-time quantum dynamics, as in ring-polymer molecular dynam-
ics (RPMD)15,16 and centroid molecular dynamics (CMD).17,18

These and related methods have enjoyed broad applicability in
recent years for exploring nuclear quantum effects in the domains
that span physical, bio-, geo-, and materials chemistry.19

For PIMD and RPMD calculations, considerable effort has been
dedicated to the development and refinement of numerical integra-
tion schemes. This work falls into two distinct categories. In the first,
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the RPMD equations of motion are preconditioned by modifying
the ring polymer mass matrix; this causes the integrated trajecto-
ries to differ from those of the RPMD model,20–26 but it can lead
to efficient and strongly stable22–24 sampling of the quantum Boltz-
mann distribution. In the second category, no modification is made
to the ring-polymer mass matrix (i.e., the “physical” masses of the
ring-polymer beads are employed).27–31

Within the second category, it is common to apply a thermo-
stat to the internal ring-polymer motions, with two primary aims: to
more efficiently sample the quantum Boltzmann distribution,25,28,29

or to avoid the “spurious resonance” artifact of the microcanonical
(i.e., unthermostated) RPMD equations of motion in which inter-
nal ring-polymer modes mechanically couple to physical modes of
the system.30,31 PIMD and RPMD integration schemes in the sec-
ond category (which preserve the RPMD model dynamics) typi-
cally employ a Trotter-like factorization of the time evolution oper-
ator.8,9,28–32 For the example of thermostated RPMD (TRPMD)30

using the generalized Langevin equation (GLE) thermostat,28 the
numerical integration is performed using33

eΔtL
= e

Δt
2 Lγe

Δt
2 LV eΔtL0 e

Δt
2 LV e

Δt
2 Lγ + O(Δt3

), (1)

where the Liouvillian L = LV + L0 + Lγ includes contributions from
the physical potential, LV , the purely harmonic free ring-polymer
motion, L0, and the friction and thermal noise, Lγ; note that the stan-
dard microcanonical RPMD numerical integration scheme is then
recovered in the limit of zero coupling to the thermostat such that8

eΔtL
= e

Δt
2 LV eΔtL0 e

Δt
2 LV + O(Δt3

). (2)

Standard practice in these RPMD and PIMD integration schemes is
to exactly evolve the harmonic free ring-polymer dynamics associ-
ated with exp(ΔtL0) using the uncoupled free ring-polymer normal
modes.8,9,28,32

The first major conclusion of the current work is that any
PIMD, RPMD, CMD,4,15–17,28–32,34–39 or other integration scheme
that involves the exact integration of the free ring polymer [i.e.,
involves the ubiquitous exp(ΔtL0) step in terms of the ring-polymer
normal modes] will exhibit provable numerical deficiencies, includ-
ing resonance instabilities and nonergodicity. For the case of the
standard microcanonical RPMD integration scheme in Eq. (2),
which is a symplectic map, exact evolution of the free ring-polymer
step leads to the provable loss of strong symplectic stability and
the demonstrable appearance of resonance instabilities in the inte-
grated trajectories. For thermostated RPMD and PIMD integration
schemes that involve a free ring-polymer step,28–31 exact evolution
of that step leads to the provable and numerically demonstrable
nonergodicity.

The second major conclusion of the current work is that these
numerical artifacts can be eliminated by simply replacing the exact
evolution of the free ring polymer step with an approximation
based on the Cayley transform: an alternative to exact free ring-
polymer evolution that is no more costly, no more complicated,
and no less accurate in the context of the full integration time
step. In particular, we show that this Cayley modification eliminates
the resonance instabilities that occur when trajectories are evolved
using standard microcanonical RPMD integrators, and we show that

it restores ergodicity to thermostated RPMD and PIMD trajecto-
ries. Furthermore, we show that the improved numerical properties
of the Cayley modification generally allows for larger RPMD and
PIMD integration time steps to be employed.

The paper is organized as follows. In Sec. II, we articulate the
numerical instability problem in the context of standard RPMD
numerical integration and introduce the Cayley modification as the
solution. Section III numerically illustrates the instability of standard
RPMD numerical integration and shows that the Cayley modifica-
tion removes this problem. Finally, in Sec. IV, we generalize these
findings to thermostated trajectories.

II. THEORY
The theory introduced in this paper adapts and advances previ-

ous mathematical results on the numerical approximation of general
second order Langevin stochastic partial differential equations with
space-time white noise.40

A. RPMD
We consider a quantum particle in 1D with the Hamiltonian

operator given by

Ĥ =
p̂2

2m
+ V(q̂), (3)

where q̂, p̂, and m represent the particle position, momentum,
and mass, respectively, and V(q̂) is a potential energy surface. All
results presented here are easily generalized to multiple dimensional
quantum systems.

The thermal equilibrium properties of the system are described
by the quantum mechanical Boltzmann partition function,

Q = Tr[e−βĤ
] , (4)

where β = (kBT)−1 is the inverse temperature. Using a path-
integral discretization, Q can be approximated by a classical partition
function Qn of a ring-polymer with n beads,4

Qn =
mn

(2πh̵)n ∫ dnq∫ dnve−βHn(q,v) , (5)

where q = (q0, . . ., qn−1) is the vector of bead positions and v is the
corresponding vector of velocities. The ring-polymer Hamiltonian is
given by

Hn(q,v) = H0
n(q,v) + Vext

n (q), (6)

which includes contributions from the physical potential

Vext
n (q) =

1
n

n−1

∑
j=0

V(qj) (7)

and the free ring-polymer Hamiltonian

H0
n(q,v) =

mn

2

n−1

∑
j=0
[v2

j + ω2
n(qj+1 − qj)

2
], (8)

where mn = m/n, ωn = n/(h̵β), and qn = q0.
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If we let n = 1 in Eq. (5), the classical partition function of the
system [governed by a classical Hamiltonian, Eq. (6) with n = 1]
is recovered, i.e., Q1 = Qcl. In the limit n → ∞, the path-integral
approximation converges to the exact quantum Boltzmann statistics
for the system such that Q∞ = Q. The thermal ensemble of ring-
polymer configurations associated with Eq. (5) can be sampled using
either molecular dynamics (leading to PIMD methods) or Monte
Carlo (leading to PIMC methods).

The classical equations of motion associated with the ring-
polymer Hamiltonian in Eq. (6),

q̇j = vj,

v̇j = ω2
n(qj+1 + qj−1 − 2qj) −

1
m

V′(qj),
(9)

yield the RPMD model for the real-time dynamics of the sys-
tem.15,16 RPMD provides a means of approximately calculating
Kubo-transformed thermal time-correlation functions, such as the
position autocorrelation function

C̃qq(t) =
1
Q

Tr[e−βĤ q̃(0)q̂(t)], (10)

where the Kubo-transformed position operator q̃ is

q̃ =
1
β ∫

β

0
eλĤ q̂e−λĤdλ (11)

and the time-evolved operator q̂(t) is eiĤt/̵hq̂e−iĤt/̵h.
Specifically, the RPMD approximation to Eq. (10) is

C̃qq(t) =
1

Qn
∫ dnq∫ dnve−βHn(q,v)q̄(0)q̄(t), (12)

where q̄ is the bead-averaged position

q̄(t) =
1
n

n−1

∑
j=0

qj(t) , (13)

and the pair [q(t), v(t)] is evolved by the RPMD equations of
motion in Eq. (9) with initial conditions drawn from the classical
Boltzmann-Gibbs measure.

The RPMD equations of motion can be compactly rewritten as

[
q̇
v̇
] = A[q

v
] + [ 0

F(q)/mn
] , where A = [0 I

L 0] , (14)

F(q) = −∇Vext
n (q), I is an n × n identity matrix, 0 is an array of

zeros, and L is the n × n Toeplitz matrix,

L = ω2
n

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2 1 0 ⋯ 0 1
1 −2 1 0 ⋯ 0
⋱ ⋱ ⋱

⋱ ⋱ ⋱

0 ⋯ 0 1 −2 1
1 0 ⋯ 0 1 −2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (15)

We recognize L as the 1D discrete Laplacian endowed with periodic
boundary conditions; it is negative semidefinite with spectral radius

that scales as n2, and since L is circulant, it can be diagonalized by the
n × n real discrete Fourier transform (DFT) matrix. In particular, the
spectral decomposition of L can be written as

L = −UΩUT, where Ω = diag(ω2
0, . . . ,ω2

n−1) (16)

is a diagonal matrix of eigenvalues ordered in descending order and
given by

ω2
j =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

4ω2
n sin2

(
πj
2n), if j is even ,

4ω2
n sin2

(
π(j+1)

2n ), else ,
(17)

and U is an n × n matrix whose columns are the corresponding
orthonormal eigenvectors.

In nontrivial applications, the RPMD equations of motion in
Eq. (14) cannot be solved analytically. It is then necessary to employ
approximate numerical integration of the equations of motion. As
we discuss next, designing good numerical integrators for Eq. (14)
is complicated by the interplay between the time-evolution of the
free ring-polymer [obtained by setting F = 0 in Eq. (14)] and the
contributions from the physical forces F.

B. Cayley removes instabilities in a free ring-polymer
mode

RPMD is an example of highly oscillatory Hamiltonian dynam-
ics.41 To understand why numerical integration of such systems is
tricky and why the Cayley modification is needed, it helps to con-
sider the equations of motion for a particular normal mode of the
free ring polymer with Matsubara frequency ω > 0,

[
q̇
v̇
] = A[q

v
], where A = [

0 1
−ω2 0], (18)

which are also the equations of motion for a linear oscillator with
natural frequency ω. If ω is large, Eq. (18) is highly oscillatory.
Solving Eq. (18) amounts to approximating the matrix exponen-
tial exp(ΔtA), where Δt is a time step size. A good 2 × 2 matrix
approximation MΔt should satisfy

(P1) Accuracy: ∥MΔt − exp(ΔtA)∥ = O(Δt3).
(P2) Strong stability: For all ω > 0, and for all Δt smaller than

some constant independent of ω, MΔt is a strongly stable
symplectic matrix.

(P3) Time-reversibility: For allω > 0 andΔt > 0,MΔt is reversible

with respect to the velocity flip matrix R = [1 0
0 −1], i.e.,

RMΔtR =M−1
Δt .

We briefly comment on each of these criteria for a good approx-
imation. Property (P1) is a basic requirement that ensures second-
order accuracy on finite-time intervals. Property (P3) is particu-
larly useful for sampling from the stationary distribution since a
reversible map can be readily Metropolized,42–44 and since time-
reversibility in a volume-preserving numerical integrator leads to a
doubling of the accuracy order (see Propositions 5.2 and Theorem
6.2 of Ref. 44, respectively). Property (P2) is the most interesting.
A symplectic matrix S is stable if all powers of the matrix S are
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bounded. A symplectic matrix S is strongly stable if S is stable, and all
sufficiently close symplectic matrices are also stable. In other words,
S is strongly stable if there exists an ϵ > 0 such that all symplectic
matrices Sϵ that are within a distance ϵ away from S are also stable.
A sufficient condition for S to be strongly stable is that the eigenval-
ues of S are on the unit circle in the complex plane and are distinct;
both the necessary and sufficient conditions for strong stability of
symplectic matrices are known.45

Figure 1 illustrates the concept of strong stability. In particular,
for different values of t (as indicated in each panel), the black dots
correspond to the eigenvalues of the symplectic matrix S = exp(tA)
with ω = 3, and the gray dots are the eigenvalues of a perturbation
of S which preserves the symplectic nature of the matrix, specifically

Sϵ = exp((1/2)tB)exp(tA)exp((1/2)tB), where B = [0 ϵ
ϵ 0] and ϵ =

0.15. For any t, note that the two eigenvalues of S are always on the
unit circle, and hence, S is always stable, but as the figure shows, S is
not always strongly stable. Indeed, in Fig. 1(a), we see that the two
eigenvalues of S, represented by a single black dot, are both equal to
(−1, 0), which violates the condition for strong stability, and in this
case, we see that one of the eigenvalues of Sϵ has modulus greater
than unity, which implies that Sϵ is unstable. In Fig. 1(b), the two
eigenvalues of S are distinct and equal to (0, ±1), and hence, S is
strongly stable. Since S is strongly stable, and ϵ is sufficiently small,
Sϵ has eigenvalues that are on the unit circle and hence is itself stable.
For a more detailed discussion of the concept of strong stability of
symplectic matrices, see Sec. 42 of Ref. 46.

A natural candidate for an approximation MΔt that satisfies
these criteria is the Verlet integrator, which is ubiquitous in the clas-
sical simulation of molecular systems.47–50 For a single Matsubara
frequency of the free ring polymer, the Verlet integrator gives

MΔt =

⎡
⎢
⎢
⎢
⎢
⎣

1 − Δt2ω2

2 Δt

− 1
2Δtω2

(2 − Δt2ω2

2 ) 1 − Δt2ω2

2

⎤
⎥
⎥
⎥
⎥
⎦

.

However, for Δt > 2/ω, the eigenvalues of MΔt are real and dis-
tinct so that one of them has modulus >1, and therefore, the pow-
ers of MΔt grow exponentially. Thus, numerical stability requires

FIG. 1. Eigenvalues of 2 × 2 symplectic matrices. Eigenvalues of a symplectic
matrix S = exp(tA) (black dots) are plotted in the complex plane along with eigen-
values of a perturbed symplectic matrix Sϵ = exp((1/2)tB)exp(tA)exp((1/2)tB) (gray
dots). The elements of A and B are specified in the text. For both values of t, S is
stable since its eigenvalues lie on the unit circle. When the eigenvalues of S are
not distinct, then as shown in (a), Sϵ has an eigenvalue with modulus greater than
one, and hence, Sϵ loses stability. However, if the eigenvalues of S are distinct,
then S is strongly stable, and as shown in (b), Sϵ is stable since its eigenvalues
remain on the unit circle.

Δt < 2/ω, and Verlet does not satisfy (P2) since this numerical
stability requirement is not uniform in ω.

Surprisingly, the exact solution for the normal-mode dynamics
also does not satisfy (P2). To see why, note that the eigenvalues of
the matrix exponential exp(ΔtA) are e±iωΔt and (P2) requires that
eiωΔt

≠ e−iωΔt which is violated if and only if

Δt =
πk
ω

for all k ≥ 1. (19)

At these time steps, the exact solution violates strong stability. This
is illustrated in Fig. 2(a), where the two eigenvalues of exp(ΔtA) are
plotted in the complex plane for a range of time step sizes. Although
the two eigenvalues of exp(ΔtA) lie on the unit circle for allΔt, strong
stability fails to hold whenever the eigenvalues are both equal to
(±1, 0).

A simple strategy to avoid these artificial resonances is to
use a random time step size δt, e.g., take as time step size an
exponential random variable δt with mean Δt. Averaging exp(δtA)
over the exponential probability density function yields MΔt
= E(exp(δtA)) = (I − ΔtA)−1, where I is the 2 × 2 identity matrix.
Unfortunately, as can be easily verified, this matrix satisfies none of
our criteria: it is neither symplectic, nor reversible, nor sufficiently
accurate. However, we can easily turn this approximation into one
that satisfies (P1), by simply composing 1/2 step of this integrator
with 1/2 step of its adjoint M−1

Δt . This correction yields the Cayley
transform of the matrix ΔtA,

cay(ΔtA) ≡ (I − (1/2)ΔtA)−1
(I + (1/2)ΔtA). (20)

In fact, the Cayley transform satisfies all three of the specified
criteria for a good numerical integrator. It is time-reversible since
Rcay(ΔtA)R = (R − (1/2)ΔtRA)−1(R + (1/2)ΔtAR) = cay(ΔtA)−1,
where we used that R−1 = R. It is a symplectic matrix since

cay(ΔtA)TJcay(ΔtA) = J, where J = [ 0 1
−1 0],

where we used the fact that A is a Hamiltonian matrix (see Ref. 51,
Sec. 2.5). More importantly, it is a strongly stable symplectic matrix

FIG. 2. Eigenvalues of the exponential vs Cayley maps. Eigenvalues of exp(ΔtA)
(a) and cay(ΔtA) (b) at 50 different time step sizes between 0.05 and 5.0 (evenly
spaced) and with ω = 3, color-coded from blue (smallest) through green and yel-
low to red (largest). For exp(ΔtA), the eigenvalues rotate around the unit circle
multiple times. However, for cay(ΔtA), the eigenvalues start near (1, 0) but never
reach (−1, 0). Since the eigenvalues of cay(ΔtA) are always distinct, it provides
strong symplectic stability, whereas the matrix exponential loses strong stability
every time the eigenvalues hit the horizontal axis. In both panels, the eigenvalue
associated with the ring-polymer centroid motion is excluded.
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for all Δt > 0, as illustrated in Fig. 2(b); in contrast with the expo-
nential map, for all ω > 0 and Δt > 0, the eigenvalues of the Cayley
map are (4 − Δt2ω2

± 4iΔtω)/(4 + Δt2ω2), which are distinct and
of unit modulus. Thus, not only is every matrix power of cay(ΔtA)
bounded, but the Cayley map is strongly stable uniformly in ω
and Δt.

C. Cayley removes instabilities in microcanonical
RPMD

For numerical integration of the conservative RPMD equations
of motion [Eq. (9) or (14)], it is standard practice8,9,16 to employ a
symmetrically split second-order integrator of the form in Eq. (2).

Furthermore, it is standard practice to exactly perform the free
ring-polymer time evolution step,16 using an exponential map of the
form exp(ΔtL0) = exp(ΔtA), where A is the matrix associated with
the dynamics of the free ring-polymer Hamiltonian,

[
q̇
v̇
] = A[q

v
]. (21)

In practice, the exact exponential map is executed by successively
(i) changing from the Cartesian bead positions and velocities to the
normal modes of the free ring polymer, (ii) numerically integrat-
ing each of the uncoupled normal mode equations of motion, and
(iii) translating the time-evolved normal mode coordinates back into
the Cartesian bead positions and velocities. Therefore, the numerical
stability of standard RPMD numerical integration may be analyzed
in normal mode coordinates, where the free ring-polymer equations
of motion in Eq. (21) decouple into a system of n independent oscil-
lators with natural frequencies given by the eigenvalues of the matrix
L in Eq. (17).

By applying Eq. (19) to each normal mode coordinate, we find
that strong stability of the exact free ring-polymer time evolution is
violated when

Δt =
πk
ωj

for all k ≥ 1 and 1 ≤ j ≤ n − 1. (22)

Unstable pairs of Δt and n are plotted using solid lines in Fig. 3(b)
for selected values of j and k. The horizontal asymptotes in this figure
reflect the fact that the eigenvalues of L converge to the eigenval-
ues of the continuous Laplacian endowed with periodic boundary
conditions.

Unlike the exact free ring-polymer step used in standard
RPMD numerical integration, the Cayley modification exp(ΔtL0)
≊ cay(ΔtA) is strongly stable for all Δt > 0 uniformly in n. To
see this, note that the Cayley transform can be equivalently com-
puted in either bead or normal mode coordinates. More precisely, let
L = −UΩUT be the spectral decomposition of L given in Eq. (16).
Direct computation then shows that

cay(ΔtA) = [U 0
0 U]cay(Δt[ 0 I

−Ω 0])[
UT 0
0 UT].

Using this correspondence, one can invoke the preceding results on
the one-dimensional oscillator, to conclude that cay(ΔtA) is second-
order accurate, strongly stable symplectic, and time-reversible.

Since the Cayley transform meets our criteria (P1)–(P3), and
under suitable conditions on the force F, the Cayley modification to

FIG. 3. Stability of RPMD trajectories on the harmonic oscillator potential. (a) Rep-
resentative trajectories performed using the standard RPMD integration scheme
and using the Cayley modification. (b) Results for the standard RPMD numer-
ical integration. The solid lines plot the instability condition in Eq. (22) for
k = {1, . . ., 10} and j = {2, 4, . . ., 16}. Higher values of j are more blue, and
higher values of k are thicker. The dotted black line shows the maximum safe
time step defined in Eq. (30). The heatmap indicates the fraction of stable trajecto-
ries using standard RPMD integration. (c) The fraction of stable trajectories using
Cayley-modified RPMD integration. Results obtained at temperature β = 1.
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the RPMD numerical integrator is provably stable and second-order
accurate on finite-time intervals with a stability requirement that is
uniform with respect to the number of ring polymer beads. On the
other hand, standard RPMD integrators may display artificial res-
onance instabilities because the free RP step is not always strongly
stable. These instabilities often manifest as exponential growth in
energy when strong stability is lost, as will be discussed in Sec. III.

We emphasize that the improved numerical stability of the Cay-
ley modification comes at zero cost in terms of algorithmic com-
plexity or computational expense, and it preserves the same order
of accuracy for the overall time step. Use of this improved integra-
tion algorithm simply involves replacing the exact normal mode free
ring-polymer step in the standard RPMD integrator with the Cayley
modification.

D. Algorithmic comparison: Standard vs Cayley
For complete clarity, we now present a side-by-side compari-

son of the full RPMD time step [Eq. (2)] with the free ring-polymer
motion exp(ΔtL0) implemented using either the standard exponen-
tial map (i.e., exact normal mode evolution) or via the Cayley mod-
ification. In both cases, the full RPMD time step associated with the
splitting in Eq. (2) is implemented using the algorithm

Velocity half-step: v ← v + Δt
2

F
mn

Free ring-polymer step: (q,v) ← FRP(q,v;Δt)

Force evaluation: F = −∇Vext
n (q)

Velocity half-step: v ← v + Δt
2

F
mn

.

(23)

In standard RPMD numerical integration, the free ring-
polymer step is performed exactly, using

1. Convert bead Cartesian coordinates to normal modes using the
orthogonal transformation,

% = Uq and φ = Uv, (24)

where U is the real DFT matrix defined in Eq. (16).
2. From t to t + Δt, exactly evolve the free ring polymer in the

normal mode coordinates,

(
%j(t + Δt)
φj(t + Δt)) = exp(ΔtAj)(

%j(t)
φj(t)

), (25)

where

Aj = [
0 1
−ω2

j 0] ,

for 0 ≤ j ≤ n − 1 with ωj defined in Eq. (17).
3. Convert back to bead Cartesian coordinates using the inverse

of U , which is just its transpose, since U is orthogonal.
In the Cayley modification, the only change is to use the

following in place of Eq. (25):

(
%j(t + Δt)
φj(t + Δt)) = cay(ΔtAj)(

%j(t)
φj(t)

), (26)

where cay is the Cayley transform given in Eq. (20).

As a final algorithmic comparison, we note that another popu-
lar means of evolving the free ring-polymer involves multiple time
stepping (MTS) with the reversible reference system propagator
algorithm (RESPA),20,32,52 which introduces an inner loop of short
time steps. However, it is easily shown that MTS-RESPA can exhibit
the same problem of resonance instabilities as exact normal-mode
evolution, due to fact that MTS-RESPA also lacks the property of
strong stability. Consequently, we will not further discuss MTS algo-
rithms in the current work although we recognize that combining
the Cayley modification with MTS in the context of the ring-polymer
contraction method53,54 is straightforward and worth pursuing.

III. RESULTS FOR RPMD
In this section, we demonstrate the numerical integration of

the microcanonical RPMD equations of motions [Eq. (14)]. Specif-
ically, we compare the performance of the standard RPMD integra-
tor, which involves exact integration of the free ring-polymer modes
[Eq. (25)] and our refinement in which the Cayley modification is
used [Eq. (26)]. Results are presented for simple one-dimensional
potentials, including

Harmonic: V(q) =
1
2

q2, (27)

Weakly anharmonic: V(q) =
1
2

q2 +
1

10
q3 +

1
100

q4, (28)

Quartic: V(q) =
1
4

q4, (29)

and using a mass of m = 1.
We begin by numerically testing the conditions for loss of

strong stability [Eq. (22)] for the example of the harmonic poten-
tial [Eq. (27)]. Figure 3(a) shows a typical example of one of the
approximately 25% of trajectories that fail for the standard RPMD
integration scheme with β = 1, n = 16, and Δt = 0.1. The unstable
trajectories start out with the typical values of ring-polymer energy
in Eq. (6) (i.e., they are not the “hot” initial conditions from the tail
of the thermal distribution), and they diverge to exponentially large
energies after relatively short propagation time when run with the
standard RPMD. All of these trajectories are stable when run with
the Cayley modification.

The solid lines in Fig. 3(b) indicate predicted conditions for
instability [Eq. (22)]. These analytical predictions are overlaid with
a heatmap showing the fraction of stable RPMD trajectories on the
harmonic potential using the standard RPMD integration scheme;
for the purposes of the current section, a trajectory is deemed to
be unstable if energy conservation associated with the ring-polymer
Hamiltonian [Eq. (6)] is violated by more than 10% within 100 time
units of simulation. There are clear correlations in Fig. 3(b) between
the predicted instabilities and observed simulation results.

Finally, Fig. 3(c) presents the corresponding heatmap for the
Cayley-modified RPMD integration scheme. The Cayley modifi-
cation preserves the conditions for strong stability, and the only
numerically unstable trajectories are found for extremely large time
steps (Δt > 0.6). A comparison of Figs. 3(b) and 3(c) reveals the clear
numerical advantages of the Cayley-modified RPMD integration
scheme over the standard RPMD integration scheme.

Before proceeding, we emphasize the generality of the loss
of strong stability with the standard RPMD numerical integrator:
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Eq. (22) makes no assumption with regard to the form of the phys-
ical potential, the dimensionality of the system, or the mass of the
particles; it only depends on the temperature of the system and the
number of ring-polymer beads in relation to the size of the integra-
tion time step. Considering Eq. (22) for the k = 1 index and the
highest Matsubara frequency of the ring-polymer, it is straightfor-
ward to show that the smallest possible time step Δt∗ at which strong
stability is violated is given by

Δt∗ =
βh̵π
2n

. (30)

We thus arrive at a highly practical expression for the “maximum
safe time step” that depends only on β and n such that all smaller
time steps avoid the loss of strong stability associated with Eq. (22).
In Fig. 3(b), this result is plotted (dotted, black line) and seen to fol-
low the convex hull of smallest time steps created by the other curves.
In passing, we note that if β corresponds to room temperature and
n = 64, then the maximum safe time step is 0.6 fs, which is strikingly
consistent with the conventional 0.5 fs time step employed in many
PIMD simulations of liquid water.

FIG. 4. Stability and accuracy of RPMD trajectories on anharmonic potentials.
Percentage of stable RPMD trajectories using standard and Cayley-modified inte-
gration as a function of time step, for the (a) weakly anharmonic and (b) quartic
potentials. Results obtained using n = 54 and β = 1. Also included are classical
MD results using the Verlet integrator. (c) For the quartic potential, a comparison
of the RPMD position time autocorrelation function obtained using standard inte-
gration with a small time step where it is stable (Δt = 0.01) and using the Cayley
modification with a range of larger time steps (Δt = 0.01, filled circles; Δt = 0.05,
empty circles; Δt = 0.10, stars), indicating no significant loss of accuracy.

Figure 4 confirms that the numerical instabilities of the stan-
dard RPMD integrator also manifest for anharmonic potentials. For
both the weakly anharmonic [Eq. (28)] and quartic [Eq. (29)] poten-
tials, we plot the fraction of stable trajectories as a function of time
step, comparing the standard RPMD integration scheme with the
Cayley modification. Also shown are the fraction of stable classi-
cal mechanical trajectories (i.e., the 1-bead limit of RPMD) when
integrated using the Verlet algorithm. Indeed, the standard RPMD
integration scheme exhibits clear numerical instabilities at particu-
lar time steps (which depend on the choice of β and n), whereas the
Cayley-modified integration scheme (like the classical integration
scheme) avoids these pronounced instabilities.

For the results in Fig. 4, the maximum safe time step is Δt∗
≈ 0.029. Note that the standard RPMD integration scheme on the
weakly anharmonic potential does not exhibit significant loss of
stability at this time step, due to the fact that the unstable ring-
polymer mode apparently does not sufficiently couple to the other
modes on the time scale of the trajectories. However, the expected
artifact at this time step is indeed observed for the quartic poten-
tial. These results illustrate that the degree to which the resonance

FIG. 5. Comparing largest stable time step as a function of the number of ring-
polymer beads for the standard and Cayley-modified RPMD integration schemes
on the (a) weakly anharmonic and (b) quartic potentials. The critical time step
for the numerical simulations is defined in the text. Also shown is the maximum
safe time step for the standard RPMD integration scheme (red dots). For classi-
cal MD integration using the Verlet algorithm, the critical time step is 0.5 for the
weakly anharmonic potential and 0.3 for the quartic potential. Results obtained at
temperature β = 1.
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instabilities of standard RPMD integration manifest will depend on
the application, but regardless of the system, these resonance insta-
bilities can be removed using the Cayley modification. Finally, panel
(c) in this figure compares the accuracy of the standard and Cayley-
modified RPMD integration schemes for the case of the quartic
oscillator, revealing that even with time steps that threefold exceed
the maximum safe time step of the standard integration scheme,
the Cayley-modified scheme shows negligible loss of accuracy in the
trajectories.

Figure 5 explores the degree to which the Cayley modification
enables the use of larger time steps in comparison with the standard
RPMD integration scheme. Defining the “critical time step” as the
largest value of Δt for which 980 out of 1000 trajectories are stable,
we compare this quantity for standard and Cayley-modified RPMD
numerical integration as a function of the number of ring-polymer
beads; the trends in the figure are insensitive to the precise definition
of the critical time step. Also shown is the maximum safe time step
for the standard RPMD integration scheme [Eq. (30)]. The improved
stability of the Cayley-modified integration scheme is seen to con-
sistently allow for the use of larger RPMD time steps. The numerical
behavior of the standard RPMD integration scheme closely tracks
the predictions of the maximum safe time step although as seen pre-
viously, the resonance instabilities do not always manifest on the
time scale of the simulated trajectories. Interestingly, for small n
in the quartic-oscillator simulations, the standard RPMD integra-
tion scheme actually underperforms the prediction of the maximum
safe time step, given that it exhibits large energy fluctuations (>10%)
without fully encountering a resonance instability. In summary,
using the maximum safe time step for the standard RPMD integra-
tion scheme as a reference, the figure indicates that in these systems,
the Cayley modification allows for substantial improvements in the
allowed time step size (threefold or more for large n).

IV. RESULTS FOR TRPMD
Thermostated RPMD (TRPMD) involves thermalization of the

internal ring-polymer modes during RPMD dynamics, with the aims
of improving sampling of the Boltzmann distribution28 or avoiding
the “spurious resonance” artifact that can appear in RPMD simula-
tions of vibrational spectra.11,30 Following Refs. 28 and 30, we imple-
ment TRPMD using the splitting in Eq. (1), where LT corresponds
to

v̇ = −γv +
√

2nm−1β−1γ1/2Ẇ(t), (31)

Ẇ(t) is a white-noise vector (since W is an n-dimensional standard
Brownian motion), and γ is an n× n friction matrix defined such that
UTγU is a diagonal matrix whose kth diagonal entry is equal to ωk
[Eq. (17)]. In normal mode coordinates [cf. Eq. (24)], this thermostat
is implemented by adding the following at the beginning and end of
the full integration step outlined in Eq. (23):

φj(t + Δt) = e−
ωjΔt

2 φj(t) +
√

nm−1β−1
√

1 − e−ωjΔtξj ,

where ξj is a standard normal variate.

A. Cayley removes nonergodicity in TRPMD
Given that it helps to avoid spurious resonances,30,31 one might

expect that a Langevin thermostat can also eliminate the instabilities

we have observed in standard RPMD integrators. This turns out to
be only partly true. Here, we show that (i) lack of strong stability in
the free RP step induces nonergodicity in standard TRPMD integra-
tors and (ii) the Cayley modification eliminates these nonergodicity
issues.

For this purpose, we revisit the simple case of a single free ring-
polymer mode, as in Sec. II B. Consider Eq. (18) with a Langevin
thermostat,

[
q̇
v̇
] = K[q

v
] + [

0
√

2β−1γẆ
] , K = A + [0 0

0 −γ] , (32)

where γ ≥ 0 is a friction factor and Ẇ(t) is a scalar white noise. The
solution [q(t), v(t)] of Eq. (32) is a bivariate Gaussian with mean
vector and covariance matrix given, respectively, by

μ(t) = exp(tK)[q(0)
v(0)] ,

Σ(t) = 2β−1γ∫
t

0
exp(sK)[0 0

0 1]exp(sKT
)ds.

(33)

In the limit as t→∞, the probability distribution of [q(t), v(t)] con-
verges to the classical Boltzmann-Gibbs measure, which in this case
is a bivariate normal distribution with mean vector and covariance
matrix given, respectively, by

μ = [00] , Σ = β−1
[
ω−2 0

0 1]. (34)

In this situation, the standard TRPMD splitting in Eq. (1)
inputs (q0, v0) and outputs (q1, v1) defined as

[
q1
v1
] = OEO[q0

v0
] +

¿
Á
ÁÀ1 − e−γΔt

β
(OE[01]ξ0 + [01]η0), (35)

where ξ0, η0 are independent standard normal random variables, E
= exp(ΔtA), and O is the 2 × 2 matrix,

O = exp(
Δt
2
Γ) , Γ = [0 0

0 −γ].

Moreover, the numerical solution after N integration steps is a
Gaussian vector with mean vector and covariance matrix given,
respectively, by

μN = (OEO)
N
[

q0
v0
] , ΣN =

N

∑
j=0
(OEO)jQ(OETO)j , (36)

where

Q = β−1
(1 − e−γΔt

)(OE[0 0
0 1]E

TO + [0 0
0 1]).

From Eq. (19), if Δt = kπ/ω for any k ≥ 1, then E is not strongly sta-
ble. At these time steps, the eigenvalues of the matrix OEO are given
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by λ+ = (−1)k and λ− = (−1)k exp(−kπγ/ω). By the Cayley-Hamilton
theorem for 2 × 2 matrices,55 we have the following representation
of the Nth power of OEO:

(OEO)N
=
(λ+)

N

λ+ − λ−
(OEO − λ−I) +

(λ−)N

λ− − λ+
(OEO − λ+I).

Since |λ+| = 1, it follows from this representation that μN does not
converge to μ in Eq. (34) because μN clearly depends on the initial
condition. Similarly, the covariance matrix ΣN fails to converge to Σ.

If we modify the above by replacing every instance of E with
C = cay(ΔtA), the modified splitting is ergodic. More precisely,
provided that the time step is sufficiently small such that

2 > (−1 + cosh(γΔt))(
4 − Δt2ω2

4 + Δt2ω2 )

2

, (37)

then the eigenvalues of OCO are a complex conjugate pair with
complex modulus |λ±| = exp(−γΔt/2). Hence, the matrix OCO is
asymptotically stable. Interestingly, the ω-independent condition

cosh(γΔt) < 3

implies that Eq. (37) holds, and under this condition, the Cayley-
modified scheme converges to the exact classical Boltzmann-Gibbs
measure, in this example.

These results carry over to TRPMD, where the free ring-
polymer equations of motion in Eq. (21) decouple into a system
of n independent oscillators with natural frequencies given by the
eigenvalues of the matrix L in Eq. (17). Although the analysis of
TRPMD in this section was performed for the specific case of the
splitting in Eq. (1) (i.e., the Bussi-Parrinello or OBABO splitting),
we have confirmed that the same problem of nonergodicity arises

in the BAOAB splitting56 and can likewise be fixed via the Cayley
modification.

B. TRPMD numerical results
Figure 6 presents TRPMD results on the harmonic potential

[Eq. (27)] using n = 6 and β = 1. For a single TRPMD trajectory,
we histogram the distribution of the normal mode coordinates that
are sampled, employing the smallest time step for which numerical
instability is observed in the microcanonical case for this number
of beads [see Fig. 3(b)]; specifically, we use Δt = 0.26, which corre-
sponds to the instability condition in Eq. (22) for the case of n = 6,
j = 5, and k = 1. Using both standard and Cayley-modified TRPMD
integration, the trajectory is sampled at every time step for a total of
770 time steps.

The centroid mode [panel (a)] follows harmonic motion that
is decoupled from the other degrees of freedom. With both integra-
tors, the lower-frequency (j = 1–4) internal ring-polymer modes are
efficiently sampled and converge to the correct Gaussian distribu-
tion [panels (c)–(f)]. However, the j = 5 mode behaves qualitatively
differently, as predicted by Eq. (22), with the standard TRPMD inte-
grator showing clear nonergodicity. The Cayley modification leads
to ergodic sampling of all ring-polymer modes.

The lower frequency internal modes can also be afflicted with
nonergodicity at larger time steps in this system. For the next-
smallest unstable time step in Fig. 3 [Δt = 0.3, which corresponds
to the instability condition in Eq. (22) with j = 3, 4, and k = 1],
the simulations were repeated. As predicted by the instability con-
dition, modes 3 and 4 are found to be nonergodic if sampled using
the standard TRPMD integrator (Fig. 7); again, ergodicity is recov-
ered using the Cayley modification. The same nonergodicity prob-
lems appear for anharmonic potentials using the standard TRPMD
integrator and can easily be avoided with the use of the Cayley
modification.

FIG. 6. Ergodicity of TRPMD recov-
ered with the Cayley modification, exam-
ple 1. Normalized histograms of the
ring-polymer normal mode displacement
coordinates for a single trajectory (6
beads, β = 1), evolved on the harmonic
potential with a time step of Δt = 0.26.
(a) The centroid mode, ωj = 0. (b) The
predicted nonergodic mode with ω5 = 12,
and [(c) and (d)] and [(e) and (f)] pairs of
modes with ω1 = ω2 = 6 and ω3 = ω4 =
10.4, respectively. Solid black line indi-
cates the equilibrium distribution of the
internal modes.
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FIG. 7. Ergodicity of TRPMD recov-
ered with the Cayley modification, exam-
ple 2. Normalized histograms of the
ring-polymer normal mode displacement
coordinates for a single trajectory (6
beads, β = 1), evolved on the harmonic
potential with a time step of Δt = 0.3. (a)
The centroid mode, ωj = 0. (b) Unique
highest frequency mode with ω5 = 12, (c)
and (d) modes with ω1 = ω2 = 6, and (e)
and (f) the predicted nonergodic modes,
ω3 = ω4 = 10.4. Solid black line indicates
the equilibrium distribution of the internal
modes.

We emphasize that the TRPMD results presented here employ
a white-noise thermostat; there are additional nonergodicity prob-
lems for colored-noise TPRMD which the Cayley modification is not
expected to improve since they likely arise from the attenuation of
the thermostat across particular frequency bands.29,57

V. SUMMARY
Strong stability is a relevant—and underappreciated—concept

for path-integral-based molecular dynamics methods. Without
strong stability, numerical integration schemes are prone to numer-
ical instabilities in the microcanonical case and nonergodicity in
the canonical case. Fortunately, one can easily imbue existing inte-
gration schemes, including those for PIMD, RPMD, TRPMD, and
many CMD methods, with strong stability via the Cayley modi-
fication introduced here. This can be done without downside in
terms of the computational cost, algorithmic complexity, or accu-
racy of the numerical integration scheme. The numerical results
presented here suggest that this will have practical benefits for sim-
ulation studies, including improved stability, improved sampling
efficiency, and improved efficiency via the use of larger MD time
steps.

While the Cayley transformation is familiar in the chemical
physics literature in the context of the Crank-Nicolson propaga-
tor58 for wavepacket dynamics,59,60 and real-time path integrals,61

it has not to our knowledge been utilized for molecular dynam-
ics, due to an underappreciation of the property of strong stabil-
ity. We conclude by noting that path-integral-based MD meth-
ods are far from unique in the physical sciences in exhibiting
highly oscillatory dynamics, with other notable examples includ-
ing Markov-Chain-Monte-Carlo-based Bayesian statistical inver-
sion,62–64 transition path sampling,65–68 stochastic wave equations,69

Drude-oscillator models for many-body polarizability and disper-
sion,70–72 and Carr-Parrinello molecular dynamics.73 We anticipate

that the Cayley modification introduced here may have similar
advantages in these and other areas of application.
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