52 research outputs found

    Consequence of the tumor-associated conversion to cyclin D1b.

    Get PDF
    Clinical evidence suggests that cyclin D1b, a variant of cyclin D1, is associated with tumor progression and poor outcome. However, the underlying molecular basis was unknown. Here, novel models were created to generate a genetic switch from cyclin D1 to cyclin D1b. Extensive analyses uncovered overlapping but non-redundant functions of cyclin D1b compared to cyclin D1 on developmental phenotypes, and illustrated the importance of the transcriptional regulatory functions of cyclin D1b in vivo. Data obtained identify cyclin D1b as an oncogene, wherein cyclin D1b expression under the endogenous promoter induced cellular transformation and further cooperated with known oncogenes to promote tumor growth in vivo. Further molecular interrogation uncovered unexpected links between cyclin D1b and the DNA damage/PARP1 regulatory networks, which could be exploited to suppress cyclin D1b-driven tumors. Collectively, these data are the first to define the consequence of cyclin D1b expression on normal cellular function, present evidence for cyclin D1b as an oncogene, and provide pre-clinical evidence of effective methods to thwart growth of cells dependent upon this oncogenic variant

    Analysis of MEFV exon methylation and expression patterns in familial Mediterranean fever

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MEFV mutations and decreased expression level of the gene are related to FMF pathology. DNA methylation at CpG islands is a well-known mechanism for transcriptional silencing. MEFV has a CpG island, spanning a part of the first intron and the whole of the second exon of the gene covering 998 bp region. Here, we tested the hypothesis that the MEFV transcript level in FMF patients correlates with its methylation level, and methylation, by allowing transcription silencing, has a role in FMF ethiopathogenesis.</p> <p>Methods</p> <p>The study group was composed of pediatric FMF patients (N = 51) and age-gender matched healthy controls (N = 21). The relative expression level of MEFV was assessed via quantitative real-time PCR (qRT-PCR) and bisulfite sequencing (BS) was performed to analyse the methylation level quantitatively.</p> <p>Results</p> <p>MEFV expression in FMF patients were decreased compared to healthy controls (<it>P </it>= 0.031). Methylation level of exon 2 of MEFV was found to be slightly higher in FMF patients compared to healthy controls (76% versus 74%) (<it>P </it>= 0.049). The expression level of the MEFV was negatively correlated with the methylation level of the CpG island in both FMF and healthy controls groups (cor = -0.29, <it>P </it>= 0.041) but more so in the FMF only group (cor = -0.36, <it>P </it>= 0.035).</p> <p>Conclusions</p> <p>In this study, the relation between reduced MEFV expression level and FMF was confirmed. Observed slight increase in methylation in FMF patients, and correlation of methylation with expression might be indicative of its role in FMF, however a larger dataset is needed to confirm our preliminary findings.</p

    Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1.

    Get PDF
    The endogenous metabolite itaconate has recently emerged as a regulator of macrophage function, but its precise mechanism of action remains poorly understood. Here we show that itaconate is required for the activation of the anti-inflammatory transcription factor Nrf2 (also known as NFE2L2) by lipopolysaccharide in mouse and human macrophages. We find that itaconate directly modifies proteins via alkylation of cysteine residues. Itaconate alkylates cysteine residues 151, 257, 288, 273 and 297 on the protein KEAP1, enabling Nrf2 to increase the expression of downstream genes with anti-oxidant and anti-inflammatory capacities. The activation of Nrf2 is required for the anti-inflammatory action of itaconate. We describe the use of a new cell-permeable itaconate derivative, 4-octyl itaconate, which is protective against lipopolysaccharide-induced lethality in vivo and decreases cytokine production. We show that type I interferons boost the expression of Irg1 (also known as Acod1) and itaconate production. Furthermore, we find that itaconate production limits the type I interferon response, indicating a negative feedback loop that involves interferons and itaconate. Our findings demonstrate that itaconate is a crucial anti-inflammatory metabolite that acts via Nrf2 to limit inflammation and modulate type I interferons

    Selective Disruption of Mitochondrial Thiol Redox State in Cells and In Vivo.

    Get PDF
    Mitochondrial glutathione (GSH) and thioredoxin (Trx) systems function independently of the rest of the cell. While maintenance of mitochondrial thiol redox state is thought vital for cell survival, this was not testable due to the difficulty of manipulating the organelle's thiol systems independently of those in other cell compartments. To overcome this constraint we modified the glutathione S-transferase substrate and Trx reductase (TrxR) inhibitor, 1-chloro-2,4-dinitrobenzene (CDNB) by conjugation to the mitochondria-targeting triphenylphosphonium cation. The result, MitoCDNB, is taken up by mitochondria where it selectively depletes the mitochondrial GSH pool, catalyzed by glutathione S-transferases, and directly inhibits mitochondrial TrxR2 and peroxiredoxin 3, a peroxidase. Importantly, MitoCDNB inactivates mitochondrial thiol redox homeostasis in isolated cells and in vivo, without affecting that of the cytosol. Consequently, MitoCDNB enables assessment of the biomedical importance of mitochondrial thiol homeostasis in reactive oxygen species production, organelle dynamics, redox signaling, and cell death in cells and in vivo.We acknowledge the Biotechnology and Biological Sciences Research Council (BB/I012826/1), the Wellcome Trust (WT110158/Z/15/Z, 110159/Z/15/Z and RG88195), the University of Glasgow (JMG Studentship), and the Medical Research Council (MC_U105663142 and MC_ UU_00015/7)
    corecore