1,023 research outputs found

    Recollimation shocks and radiative losses in extragalactic relativistic jets

    Get PDF
    We present the results of state-of-the-art simulations of recollimation shocks induced by the interaction of a relativistic jet with an external medium, including the effect of radiative losses of the shocked gas. Our simulations confirm that -- as suggested by earlier semi-analytical models -- the post-shock pressure loss induced by radiative losses may lead to a stationary equilibrium state characterized by a very strong focusing of the flow, with the formation of quite narrow nozzles, with cross-sectional radii as small as 10310^{-3} times the length scale of the jet. We also study the time-dependent evolution of the jet structure induced of a density perturbation injected at the flow base. The set-up and the results of the simulations are particularly relevant for the interpretation of the observed rapid variability of the γ\gamma-ray emission associated to flat spectrum radio quasars. In particular, the combined effects of jet focusing and Doppler beaming of the observed radiation make it possible to explain the sub-hour flaring events such as that observed in the FSRQ PKS 1222+216 by MAGIC.Comment: 8 pages, 8 figures, Astronomy and Astrophysics accepte

    Collisional Quenching at Ultralow Energies: Controlling Efficiency with Internal State Selection

    Full text link
    Calculations have been carried out for the vibrational quenching of excited H2_2 molecules which collide with Li+^+ ions at ultralow energies. The dynamics has been treated exactly using the well known quantum coupled-channel expansions over different initial vibrational levels. The overall interaction potential has been obtained from the calculations carried out earlier in our group using highly correlated ab initio methods. The results indicate that specific features of the scattering observables, e.g. the appearance of Ramsauer-Townsend minima in elastic channel cross sections and the marked increase of the cooling rates from specific initial states, can be linked to potential properties at vanishing energies (sign and size of scattering lengths) and to the presence of either virtual states or bound states. The suggestion is made that by selecting the initial state preparation of the molecular partners, the ionic interactions would be amenable to controlling quenching efficiency at ultralow energies

    Fully Convective Magnetorotational Turbulence in Stratified Shearing Boxes

    Get PDF
    We present a numerical study of turbulence and dynamo action in stratified shearing boxes with zero magnetic flux. We assume that the fluid obeys the perfect gas law and has finite (constant) thermal diffusivity. We choose radiative boundary conditions at the vertical boundaries in which the heat flux is propor- tional to the fourth power of the temperature. We compare the results with the corresponding cases in which fixed temperature boundary conditions are applied. The most notable result is that the formation of a fully convective state in which the density is nearly constant as a function of height and the heat is transported to the upper and lower boundaries by overturning motions is robust and persists even in cases with radiative boundary conditions. Interestingly, in the convective regime, although the diffusive transport is negligible the mean stratification does not relax to an adiabatic state.Comment: 11 pages, 4 figures, accepted for publication in ApJ Letter

    On the convergence of Magnetorotational turbulence in stratified isothermal shearing boxes

    Get PDF
    We consider the problem of convergence in stratified isothermal shearing boxes with zero net magnetic flux. We present results with the highest resolution to-date--up to 200 grid-point per pressure scale height--that show no clear evidence of convergence. Rather, the Maxwell stresses continue to decrease with increasing resolution. We propose some possible scenarios to explain the lack of convergence based on multi-layer dynamo systems.Comment: 10 pages, 4 figures, accepted for publication in ApJ Letter

    Velocity Fields of Spiral Galaxies in z~0.5 Clusters

    Get PDF
    Spiral galaxies can be affected by interactions in clusters, that also may distort the internal velocity field. If unrecognized from single-slit spectroscopy, this could lead to a wrong determination of the maximum rotation velocity as pointed out by Ziegler et al. (2003). This parameter directly enters into the Tully-Fisher relation, an important tool to investigate the evolution of spiral galaxies. To overcome this problem, we measure the 2D-velocity fields by observing three different slit positions per galaxy using FORS2 at the VLT providing us with full coverage of each galaxy and an adequate spatial resolution. The kinematic properties are compared to structural features determined on the HST/ACS images to assess possible interaction processes. As a next step, the whole analysis will be performed for three more clusters, so that we will be able to establish a high-accuracy TFR for spirals at z~0.5.Comment: 2 pages, 2 figures, going to be published in the proceedings of the IAU Symp. 241, "Stellar Populations as Building Blocks of Galaxies

    Magnetic Helicities and Dynamo Action in Magneto-rotationally Driven Turbulence

    Get PDF
    We examine the relationship between magnetic flux generation, taken as an indicator of large-scale dynamo action, and magnetic helicity, computed as an integral over the dynamo volume, in a simple dynamo. We consider dynamo action driven by Magneto-Rotational Turbulence (MRT) within the shearing-box approximation. We consider magnetically open boundary conditions that allow a flux of helicity in or out of the computational domain. We circumvent the problem of the lack of gauge invariance in open domains by choosing a particular gauge -- the winding gauge -- that provides a natural interpretation in terms of average winding number of pairwise field lines. We use this gauge precisely to define and measure the helicity and helicity flux for several realizations of dynamo action. We find in these cases, that the system as a whole does not break reflectional symmetry and the total helicity remains small even in cases when substantial magnetic flux is generated. We find no particular connection between the generation of magnetic flux and the helicity or the helicity flux through the boundaries. We suggest that this result may be due to the essentially nonlinear nature of the dynamo processes in MRT.Comment: 26 pages, 10 figures, ApJ accepte

    Neutral and ionic dopants in helium clusters: interaction forces for the Li2(a3Σu+)HeLi_2(a^3\Sigma_u^+)-He and Li2+(X2Σg+)HeLi_2^+(X^2\Sigma_g^+)-He

    Full text link
    The potential energy surface (PES) describing the interactions between Li2(1Σu+)\mathrm{Li_{2}(^{1}\Sigma_{u}^{+})} and 4He\mathrm{^{4}He} and an extensive study of the energies and structures of a set of small clusters, Li2(He)n\mathrm{Li_{2}(He)_{n}}, have been presented by us in a previous series of publications [1-3]. In the present work we want to extend the same analysis to the case of the excited Li2(a3Σu+)\mathrm{Li_{2}}(a^{3}\Sigma_{u}^{+}) and of the ionized Li2+(X2Σg+)_{2}^{+}(X^{2}\Sigma_{g}^{+}) moiety. We thus show here calculated interaction potentials for the two title systems and the corresponding fitting of the computed points. For both surfaces the MP4 method with cc-pV5Z basis sets has been used to generate an extensive range of radial/angular coordinates of the two dimensional PES's which describe rigid rotor molecular dopants interacting with one He partner

    Bosonic Helium droplets with cationic impurities: onset of electrostriction and snowball effects from quantum calculations

    Get PDF
    Variational MonteCarlo and Diffusion MonteCarlo calculations have been carried out for cations like Li+^+, Na+^+ and K+^+ as dopants of small helium clusters over a range of cluster sizes up to about 12 solvent atoms. The interaction has been modelled through a sum-of-potential picture that disregards higher order effects beyond atom-atom and atom-ion contributions. The latter were obtained from highly correlated ab-initio calculations over a broad range of interatomic distances. This study focuses on two of the most striking features of the microsolvation in a quantum solvent of a cationic dopant: electrostriction and snowball effects. They are here discussed in detail and in relation with the nanoscopic properties of the interaction forces at play within a fully quantum picture of the clusters features
    corecore