2,420 research outputs found

    Filling of orbital fluid management systems

    Get PDF
    A study was performed with three objectives: (1) analyze fluid management system fill under orbital conditions; (2) determine what experimentation is needed; and (3) develop an experimental program. The fluid management system was a 1.06m (41.7 in) diameter pressure vessel with screen channel device. Analyses were conducted using liquid hydrogen and N2O4. The influence of helium and autogenous pressurization systems was considered. Analyses showed that fluid management system fill will be more difficult with a cryogen than with an earth storable. The key to a successful fill with cryogens is in devising techniques for filling without vent liquid, and removing trapped vapor from the screen device at tank fill completion. This will be accomplished with prechill, fill, and vapor condensation processes. Refill will require a vent and purge process, to dilute the residual helium, prior to introducing liquid. Neither prechill, chill, nor purge processes will be required for earth storables

    Experimental quantum information processing with 43Ca+ ions

    Full text link
    For quantum information processing (QIP) with trapped ions, the isotope 43Ca+ offers the combined advantages of a quantum memory with long coherence time, a high fidelity read out and the possibility of performing two qubit gates on a quadrupole transition with a narrow-band laser. Compared to other ions used for quantum computing, 43Ca+ has a relatively complicated level structure. In this paper we discuss how to meet the basic requirements for QIP and demonstrate ground state cooling, robust state initialization and efficient read out for the hyperfine qubit with a single 43Ca+ ion. A microwave field and a Raman light field are used to drive qubit transitions, and the coherence times for both fields are compared. Phase errors due to interferometric instabilities in the Raman field generation do not limit the experiments on a time scale of 100 ms. We find a quantum information storage time of many seconds for the hyperfine qubit.Comment: 9 pages, 10 figure

    Motion Tomography of a single trapped ion

    Full text link
    A method for the experimental reconstruction of the quantum state of motion for a single trapped ion is proposed. It is based on the measurement of the ground state population of the trap after a sudden change of the trapping potential. In particular, we show how the Q function and the quadrature distribution can be measured directly. In an example we demonstrate the principle and analyze the sensibility of the reconstruction process to experimental uncertainties as well as to finite grid limitations. Our method is not restricted to the Lamb-Dicke Limit and works in one or more dimensions.Comment: 4 pages, Revtex format, 4 postscript figures, changed typographical error

    Laser cooling with electromagnetically induced transparency: Application to trapped samples of ions or neutral atoms

    Full text link
    A novel method of ground state laser cooling of trapped atoms utilizes the absorption profile of a three (or multi-) level system which is tailored by a quantum interference. With cooling rates comparable to conventional sideband cooling, lower final temperatures may be achieved. The method was experimentally implemented to cool a single Ca+^+ ion to its vibrational ground state. Since a broad band of vibrational frequencies can be cooled simultaneously, the technique will be particularly useful for the cooling of larger ion strings, thereby being of great practical importance for initializing a quantum register based on trapped ions. We also discuss its application to different level schemes and for ground state cooling of neutral atoms trapped by a far detuned standing wave laser field.Comment: 9 pages, 13 figures, submitted to Appl Phys B 200

    Nonlinear coupling of continuous variables at the single quantum level

    Full text link
    We experimentally investigate nonlinear couplings between vibrational modes of strings of cold ions stored in linear ion traps. The nonlinearity is caused by the ions' Coulomb interaction and gives rise to a Kerr-type interaction Hamiltonian H = n_r*n_s, where n_r,n_s are phonon number operators of two interacting vibrational modes. We precisely measure the resulting oscillation frequency shift and observe a collapse and revival of the contrast in a Ramsey experiment. Implications for ion trap experiments aiming at high-fidelity quantum gate operations are discussed

    Spin-based quantum gating with semiconductor quantum dots by bichromatic radiation method

    Full text link
    A potential scheme is proposed for realizing a two-qubit quantum gate in semiconductor quantum dots. Information is encoded in the spin degrees of freedom of one excess conduction electron of each quantum dot. We propose to use two lasers, radiation two neighboring QDs, and tuned to blue detuning with respect to the resonant frequencies of individual excitons. The two-qubit phase gate can be achieved by means of both Pauli-blocking effect and dipole-dipole coupling between intermediate excitonic states.Comment: Europhysics Letters 66 (2004) 1
    • …
    corecore