275 research outputs found
The specificity and robustness of long-distance connections in weighted, interareal connectomes
Brain areas' functional repertoires are shaped by their incoming and outgoing
structural connections. In empirically measured networks, most connections are
short, reflecting spatial and energetic constraints. Nonetheless, a small
number of connections span long distances, consistent with the notion that the
functionality of these connections must outweigh their cost. While the precise
function of these long-distance connections is not known, the leading
hypothesis is that they act to reduce the topological distance between brain
areas and facilitate efficient interareal communication. However, this
hypothesis implies a non-specificity of long-distance connections that we
contend is unlikely. Instead, we propose that long-distance connections serve
to diversify brain areas' inputs and outputs, thereby promoting complex
dynamics. Through analysis of five interareal network datasets, we show that
long-distance connections play only minor roles in reducing average interareal
topological distance. In contrast, areas' long-distance and short-range
neighbors exhibit marked differences in their connectivity profiles, suggesting
that long-distance connections enhance dissimilarity between regional inputs
and outputs. Next, we show that -- in isolation -- areas' long-distance
connectivity profiles exhibit non-random levels of similarity, suggesting that
the communication pathways formed by long connections exhibit redundancies that
may serve to promote robustness. Finally, we use a linearization of
Wilson-Cowan dynamics to simulate the covariance structure of neural activity
and show that in the absence of long-distance connections, a common measure of
functional diversity decreases. Collectively, our findings suggest that
long-distance connections are necessary for supporting diverse and complex
brain dynamics.Comment: 18 pages, 8 figure
Dynamic fluctuations coincide with periods of high and low modularity in resting-state functional brain networks
We investigate the relationship of resting-state fMRI functional connectivity
estimated over long periods of time with time-varying functional connectivity
estimated over shorter time intervals. We show that using Pearson's correlation
to estimate functional connectivity implies that the range of fluctuations of
functional connections over short time scales is subject to statistical
constraints imposed by their connectivity strength over longer scales. We
present a method for estimating time-varying functional connectivity that is
designed to mitigate this issue and allows us to identify episodes where
functional connections are unexpectedly strong or weak. We apply this method to
data recorded from participants, and show that the number of
unexpectedly strong/weak connections fluctuates over time, and that these
variations coincide with intermittent periods of high and low modularity in
time-varying functional connectivity. We also find that during periods of
relative quiescence regions associated with default mode network tend to join
communities with attentional, control, and primary sensory systems. In
contrast, during periods where many connections are unexpectedly strong/weak,
default mode regions dissociate and form distinct modules. Finally, we go on to
show that, while all functional connections can at times manifest stronger
(more positively correlated) or weaker (more negatively correlated) than
expected, a small number of connections, mostly within the visual and
somatomotor networks, do so a disproportional number of times. Our statistical
approach allows the detection of functional connections that fluctuate more or
less than expected based on their long-time averages and may be of use in
future studies characterizing the spatio-temporal patterns of time-varying
functional connectivityComment: 47 Pages, 8 Figures, 4 Supplementary Figure
Fluctuations between high- and low-modularity topology in time-resolved functional connectivity
Modularity is an important topological attribute for functional brain
networks. Recent studies have reported that modularity of functional networks
varies not only across individuals being related to demographics and cognitive
performance, but also within individuals co-occurring with fluctuations in
network properties of functional connectivity, estimated over short time
intervals. However, characteristics of these time-resolved functional networks
during periods of high and low modularity have remained largely unexplored. In
this study we investigate spatiotemporal properties of time-resolved networks
in the high and low modularity periods during rest, with a particular focus on
their spatial connectivity patterns, temporal homogeneity and test-retest
reliability. We show that spatial connectivity patterns of time-resolved
networks in the high and low modularity periods are represented by increased
and decreased dissociation of the default mode network module from
task-positive network modules, respectively. We also find that the instances of
time-resolved functional connectivity sampled from within the high (low)
modularity period are relatively homogeneous (heterogeneous) over time,
indicating that during the low modularity period the default mode network
interacts with other networks in a variable manner. We confirmed that the
occurrence of the high and low modularity periods varies across individuals
with moderate inter-session test-retest reliability and that it is correlated
with previously-reported individual differences in the modularity of functional
connectivity estimated over longer timescales. Our findings illustrate how
time-resolved functional networks are spatiotemporally organized during periods
of high and low modularity, allowing one to trace individual differences in
long-timescale modularity to the variable occurrence of network configurations
at shorter timescales.Comment: Reorganized the paper; to appear in NeuroImage; arXiv abstract
shortened to fit within character limit
- …