10 research outputs found

    Functional TRAIL receptors in monocytes and tumor-associated macrophages: A possible targeting pathway in the tumor microenvironment

    Get PDF
    Despite the accepted dogma that TRAIL kills only tumor cells and spares normal ones, we show in this study that mononuclear phagocytes are susceptible to recombinant TRAIL via caspase-dependent apoptosis. Human resting monocytes and in vitro-differentiated macrophages expressed substantial levels of the functional TRAIL receptors (TRAIL-R1 and TRAIL-R2), while neutrophils and lymphocytes mostly expressed the non-signaling decoy receptor (TRAIL-R3). Accordingly, exclusively monocytes and macrophages activated caspase-8 and underwent apoptosis upon recombinant TRAIL treatment. TRAIL-Rs were up-regulated by anti-inflammatory agents (IL-10, glucocorticoids) and by natural compounds (Apigenin, Quercetin, Palmitate) and their treatment resulted in increased TRAIL-induced apoptosis. In mice, the only signaling TRAIL-R (DR5) was preferentially expressed by blood monocytes rather than neutrophils or lymphocytes. In both mice and humans, Tumor-Associated Macrophages (TAM) expressed functional TRAIL-R, while resident macrophages in normal tissues did not. As a proof of principle, we treated mice bearing a murine TRAIL-resistant fibrosarcoma with recombinant TRAIL. We observed significant decrease of circulating monocytes and infiltrating TAM, as well as reduced tumor growth and lower metastasis formation. Overall, these findings demonstrate that human and murine monocytes/macrophages are, among leukocytes, uniquely susceptible to TRAIL-mediated killing. This differential susceptibility to TRAIL could be exploited to selectively target macrophages in tumors

    Tertiary intratumor lymphoid tissue in colo-rectal cancer

    No full text
    Ectopic (or tertiary) lymphoid tissue develops at sites of inflammation or infection in non lymphoid organs and is associated with chronic inflammation. In colon mucosa, small lymphoid aggregates are already present in homeostatic conditions, as part of the gut-associated lymphoid tissue and play an essential role in the immune response to perturbations of the mucosal microenvironment. Despite the recognized role of inflammation in tumor progression, the presence and biological function of lymphoid tissue in cancer has been poorly investigated. We identified aggregates of lymphocytes resembling tertiary lymphoid tissue in human colorectal cancer specimens; intratumor accumulations of lymphocytes display a high degree of compartmentalization, with B and T cells, mature dendritic cells and a network of CD21 + follicular dendritic cells (FDC). We analyzed the adaptation of colon lymphoid tissue in a murine model of colitis-associated cancer (AOM/DSS). B cell follicle formation increases in the context of the chronic inflammation associated to intestinal neoplasia, in this model. A network of lymphatic and haematic vessels surrounding B cell follicles is present and includes high endothelial venules (HEV). Future task is to determine whether lymphoid tissue contributes to the persistence of the tumor-associated inflammatory reaction, rather than represent a functional immune compartment, potentially participating to the anti tumor response. © 2012 by the authors; licensee MDPI, Basel, Switzerland

    Immune-based therapies in pancreatic and colorectal cancers and biomarkers of responsiveness

    No full text
    Immune-based strategies are the most promising treatments to improve cancer disease control. Early clinical trials are ongoing to test the safety and feasibility of immune-based therapies for gastrointestinal cancers. However, to date, immunotherapy has been only an experimental option for these diseases and a better understanding of their molecular, cellular, structural and clinical dissimilarities is crucial in the generation of tailored immunotherapeutic treatments. In this review, we will summarize the key mechanisms that regulate the action of immune system in cancer and the different immune-based approaches aimed at improving disease control in patients with advanced disease. We will then move on to discussing the current immunotherapeutic approaches in two types of gastrointestinal (colo-rectal and pancreatic) cancers, whose immune microenvironment has been lately object of intense analyses and has emerged as an important determinant of clinical outcome

    Occurrence of tertiary lymphoid tissue is associated with T-cell infiltration and predicts better prognosis in early-stage colorectal cancers

    No full text
    Purpose: Tumor-infiltrating T lymphocytes (TIL) play a key role in the clinical outcome of human colorectal cancer; however, the dynamics of their recruitment along colorectal cancer clinical progression have not been fully elucidated. Tertiary lymphoid tissue (TLT) is an ectopic organized lymph node-like structure that typically forms at sites of chronic inflammation and is involved in adaptive immune responses. Its occurrence in cancer is sporadically documented and its role and clinical relevance is largely unknown. Experimental Design: The occurrence of TLT, the correlation with TILs, and the clinical relevance were evaluated retrospectively, in a cohort study involving a consecutive series of 351 patients with stage II and III colorectal cancer. The role of TLT in lymphocyte recruitment was assessed in a preclinical model of colorectal cancer. Results: In both human colorectal cancer and in a murine model of colorectal cancer, we identified organized TLT, highly vascularized (including high endothelial venules), and correlated with the density of CD3+ TILs. Intravenous injection in mice of GFP splenocytes resulted in homing of lymphocytes to TLT, suggesting an active role of TLT in the recruitment of lymphocytes to tumor areas. Accordingly, TLT density and TIL infiltration correlated and were coordinated in predicting better patient's outcome among patients with stage II colorectal cancer. Conclusions: We provide evidence that TLT is associated with lymphocyte infiltration in colorectal cancer, providing a pathway of recruitment for TILs. TLT cooperates with TILs in a coordinated antitumor immune response, when identifying patients with low-risk early-stage colorectal cancer, thus, representing a novel prognostic biomarker for colorectal cancer

    Acute myeloid leukemia bearing cytoplasmic nucleophosmin (NPMc+ AML) shows a distinct gene expression profile characterized by up-regulation of genes involved in stem-cell maintenance

    No full text
    Approximately one third of acute myeloid leukemias (AMLs) are characterized by aberrant cytoplasmic localization of nucleophosmin (NPMc+ AML), consequent to mutations in the NPM putative nucleolar localization signal. These events are mutually exclusive with the major AML-associated chromosomal rearrangements, and are frequently associated with normal karyotype, FLT3 mutations, and multilineage involvement. We report the gene expression profiles of 78 de novo AMLs (72 with normal karyotype; 6 without major chromosomal abnormalities) that were characterized for the subcellular localization and mutation status of NPM. Unsupervised clustering clearly separated NPMc+ from NPMc\u2013 AMLs, regardless of the presence of FLT3 mutations or non\u2013major chromosomal rearrangements, supporting the concept that NPMc+ AML represents a distinct entity. The molecular signature of NPMc+ AML includes up-regulation of several genes putatively involved in the maintenance of a stem-cell phenotype, suggesting that NPMc+ AML may derive from a multipotent hematopoietic progenitor

    Ectopic lymphoid-like structures in infection, cancer and autoimmunity

    No full text
    Ectopic lymphoid-like structures often develop at sites of inflammation where they influence the course of infection, autoimmune disease, cancer and transplant rejection. These lymphoid aggregates range from tight clusters of B cells and T cells to highly organized structures that comprise functional germinal centres. Although the mechanisms governing ectopic lymphoid neogenesis in human pathology remain poorly defined, the presence of ectopic lymphoid-like structures within inflamed tissues has been linked to both protective and deleterious outcomes in patients. In this Review, we discuss investigations in both experimental model systems and patient cohorts to provide a perspective on the formation and functions of ectopic lymphoid-like structures in human pathology, with particular reference to the clinical implications and the potential for therapeutic targeting

    Ectopic lymphoid-like structures in infection, cancer and autoimmunity

    No full text
    corecore