42 research outputs found

    Recursive music elucidates neural mechanisms supporting the generation and detection of melodic hierarchies

    Get PDF
    The ability to generate complex hierarchical structures is a crucial component of human cognition which can be expressed in the musical domain in the form of hierarchical melodic relations. The neural underpinnings of this ability have been investigated by comparing the perception of well-formed melodies with unexpected sequences of tones. However, these contrasts do not target specifically the representation of rules generating hierarchical structure. Here, we present a novel paradigm in which identical melodic sequences are generated in four steps, according to three different rules: The Recursive rule, generating new hierarchical levels at each step; The Iterative rule, adding tones within a fixed hierarchical level without generating new levels; and a control rule that simply repeats the third step. Using fMRI, we compared brain activity across these rules when participants are imagining the fourth step after listening to the third (generation phase), and when participants listened to a fourth step (test sound phase), either well-formed or a violation. We found that, in comparison with Repetition and Iteration, imagining the fourth step using the Recursive rule activated the superior temporal gyrus (STG). During the test sound phase, we found fronto-temporo-parietal activity and hippocampal de-activation when processing violations, but no differences between rules. STG activation during the generation phase suggests that generating new hierarchical levels from previous steps might rely on retrieving appropriate melodic hierarchy schemas. Previous findings highlighting the role of hippocampus and inferior frontal gyrus may reflect processing of unexpected melodic sequences, rather than hierarchy generation per se

    Melodic Intonation Therapy for aphasia: A multi-level meta-analysis of randomized controlled trials and individual participant data

    Get PDF
    Melodic Intonation Therapy (MIT) is a prominent rehabilitation program for individuals with post-stroke aphasia. Our meta-analysis investigated the efficacy of MIT while considering quality of outcomes, experimental design, influence of spontaneous recovery, MIT protocol variant, and level of generalization. Extensive literature search identified 606 studies in major databases and trial registers; of those, 22 studies-overall 129 participants-met all eligibility criteria. Multi-level mixed- and random-effects models served to separately meta-analyze randomized controlled trial (RCT) and non-RCT data. RCT evidence on validated outcomes revealed a small-to-moderate standardized effect in noncommunicative language expression for MIT-with substantial uncertainty. Unvalidated outcomes attenuated MIT's effect size compared to validated tests. MIT's effect size was 5.7 times larger for non-RCT data compared to RCT data (g̅case report = 2.01 vs. g̅RCT = 0.35 for validated Non-Communicative Language Expression measures). Effect size for non-RCT data decreased with number of months post-stroke, suggesting confound through spontaneous recovery. Deviation from the original MIT protocol did not systematically alter benefit from treatment. Progress on validated tests arose mainly from gains in repetition tasks rather than other domains of verbal expression, such as everyday communication ability. Our results confirm the promising role of MIT in improving trained and untrained performance on unvalidated outcomes, alongside validated repetition tasks, and highlight possible limitations in promoting everyday communication ability

    Differential functional benefits of ultra highfield MR systems within the language network

    Get PDF
    Several investigations have shown limitations of fMRI reliability with the current standard field strengths. Improvement is expected from ultra highfield systems but studies on possible benefits for cognitive networks are lacking. Here we provide an initial investigation on a prominent and clinically highly-relevant cognitive function: language processing in individual brains. 26 patients evaluated for presurgical language localization were investigated with a standardized overt language fMRI paradigm on both 3T and 7T MR scanners. During data acquisition and analysis we made particular efforts to minimize effects not related to static magnetic field strength differences. Six measures relevant for functional activation showed a large dissociation between essential language network nodes: although in Wernicke's area 5/6 measures indicated a benefit of ultra highfield, in Broca's area no comparison was significant. The most important reason for this discrepancy was identified as being an increase in susceptibility-related artifacts in inferior frontal brain areas at ultra high field. We conclude that functional UHF benefits are evident, however these depend crucially on the brain region investigated and the ability to control local artifacts

    The Impact of Echo Time Shifts and Temporal Signal Fluctuations on BOLD Sensitivity in Presurgical Planning at 7 T.

    Get PDF
    OBJECTIVES: Gradients in the static magnetic field caused by tissues with differing magnetic susceptibilities lead to regional variations in the effective echo time, which modifies both image signal and BOLD sensitivity. Local echo time changes are not considered in the most commonly used metric for BOLD sensitivity, temporal signal-to-noise ratio (tSNR), but may be significant, particularly at ultrahigh field close to air cavities (such as the sinuses and ear canals) and near gross brain pathologies and postoperative sites. MATERIALS AND METHODS: We have studied the effect of local variations in echo time and tSNR on BOLD sensitivity in 3 healthy volunteers and 11 patients with tumors, postoperative cavities, and venous malformations at 7 T. Temporal signal-to-noise ratio was estimated from a 5-minute run of resting state echo planar imaging with a nominal echo time of 22 milliseconds. Maps of local echo time were derived from the phase of a multiecho GE scan. One healthy volunteer performed 10 runs of a breath-hold task. The t-map from this experiment served as a criterion standard BOLD sensitivity measure. Two runs of a less demanding breath-hold paradigm were used for patients. RESULTS: In all subjects, a strong reduction in the echo time (from 22 milliseconds to around 11 milliseconds) was found close to the ear canals and sinuses. These regions were characterized by high tSNR but low t-values in breath-hold t-maps. In some patients, regions of particular interest in presurgical planning were affected by reductions in the echo time to approximately 13-15 milliseconds. These included the primary motor cortex, Broca's area, and auditory cortex. These regions were characterized by high tSNR values (70 and above). Breath-hold results were corrupted by strong motion artifacts in all patients. CONCLUSIONS: Criterion standard BOLD sensitivity estimation using hypercapnic experiments is challenging, especially in patient populations. Taking into consideration the tSNR, commonly used for BOLD sensitivity estimation, but ignoring local reductions in the echo time (eg, from 22 to 11 milliseconds), would erroneously suggest functional sensitivity sufficient to map BOLD signal changes. It is therefore important to consider both local variations in the echo time and temporal variations in signal, using the product metric of these two indices for instance. This should ensure a reliable estimation of BOLD sensitivity and to facilitate the identification of potential false-negative results. This is particularly true at high fields, such as 7 T and in patients with large pathologies and postoperative cavities

    Testing the potential of a virtual reality neurorehabilitation system during performance of observation, imagery and imitation of motor actions recorded by wireless functional near-infrared spectroscopy (fNIRS)

    Get PDF
    Background Several neurorehabilitation strategies have been introduced over the last decade based on the so-called simulation hypothesis. This hypothesis states that a neural network located in primary and secondary motor areas is activated not only during overt motor execution, but also during observation or imagery of the same motor action. Based on this hypothesis, we investigated the combination of a virtual reality (VR) based neurorehabilitation system together with a wireless functional near infrared spectroscopy (fNIRS) instrument. This combination is particularly appealing from a rehabilitation perspective as it may allow minimally constrained monitoring during neurorehabilitative training. Methods fNIRS was applied over F3 of healthy subjects during task performance in a virtual reality (VR) environment: 1) 'unilateral' group (N = 15), contralateral recording during observation, motor imagery, observation & motor imagery, and imitation of a grasping task performed by a virtual limb (first-person perspective view) using the right hand; 2) 'bilateral' group (N = 8), bilateral recording during observation and imitation of the same task using the right and left hand alternately. Results In the unilateral group, significant within-condition oxy-hemoglobin concentration Δ[O2Hb] changes (mean ± SD μmol/l) were found for motor imagery (0.0868 ± 0.5201 μmol/l) and imitation (0.1715 ± 0.4567 μmol/l). In addition, the bilateral group showed a significant within-condition Δ[O2Hb] change for observation (0.0924 ± 0.3369 μmol/l) as well as between-conditions with lower Δ[O2Hb] amplitudes during observation compared to imitation, especially in the ipsilateral hemisphere (p < 0.001). Further, in the bilateral group, imitation using the non-dominant (left) hand resulted in larger Δ[O2Hb] changes in both the ipsi- and contralateral hemispheres as compared to using the dominant (right) hand. Conclusions This study shows that our combined VR-fNIRS based neurorehabilitation system can activate the action-observation system as described by the simulation hypothesis during performance of observation, motor imagery and imitation of hand actions elicited by a VR environment. Further, in accordance with previous studies, the findings of this study revealed that both inter-subject variability and handedness need to be taken into account when recording in untrained subjects. These findings are of relevance for demonstrating the potential of the VR-fNIRS instrument in neurofeedback applications

    Multimodal Functional Network Connectivity: An EEG-fMRI Fusion in Network Space

    Get PDF
    EEG and fMRI recordings measure the functional activity of multiple coherent networks distributed in the cerebral cortex. Identifying network interaction from the complementary neuroelectric and hemodynamic signals may help to explain the complex relationships between different brain regions. In this paper, multimodal functional network connectivity (mFNC) is proposed for the fusion of EEG and fMRI in network space. First, functional networks (FNs) are extracted using spatial independent component analysis (ICA) in each modality separately. Then the interactions among FNs in each modality are explored by Granger causality analysis (GCA). Finally, fMRI FNs are matched to EEG FNs in the spatial domain using network-based source imaging (NESOI). Investigations of both synthetic and real data demonstrate that mFNC has the potential to reveal the underlying neural networks of each modality separately and in their combination. With mFNC, comprehensive relationships among FNs might be unveiled for the deep exploration of neural activities and metabolic responses in a specific task or neurological state

    Visualizing the Human Subcortex Using Ultra-high Field Magnetic Resonance Imaging

    Get PDF

    Self-similarity and recursion as default modes in human cognition

    No full text
    Humans generate recursive hierarchies in a variety of domains, including linguistic, social and visuo-spatial modalities. The ability to represent recursive structures has been hypothesized to increase the efficiency of hierarchical processing. Theoretical work together with recent empirical findings suggests that the ability to represent the self-similar structure of hierarchical recursive stimuli may be supported by internal neural representations that compress raw external information and increase efficiency. In order to explicitly test whether the representation of recursive hierarchies depends on internalized rules we compared the processing of visual hierarchies represented either as recursive or non-recursive, using task-free resting-state fMRI data. We aimed to evaluate the relationship between task-evoked functional networks induced by cognitive representations with the corresponding resting-state architecture. We observed increased connectivity within Default Mode Network (DMN) related brain areas during the representation of recursion, while non-recursive representations yielded increased connectivity within the Fronto-Parietal Control-Network. Our results suggest that human hierarchical information processing using recursion is supported by the DMN. In particular, the representation of recursion seems to constitute an internally-biased mode of information-processing that is mediated by both the core and dorsal-medial subsystems of the DMN. Compressed internal rule representations mediated by the \DMN\ may help humans to represent and process hierarchical structures in complex environments by considerably reducing information processing load

    Experiments in Movement Using DC-EEG, MEG, SPECT and FMRI

    No full text
    Our volitional self-initiated acts are preceded by the Bereitschaftspotential (BP) or readiness potential [34,35]. The BP has an early component (BP1) and a late component (BP2, see Fig. 1). The early component BP1 lasts from the very beginning of the BP (1-2 s or more prior to movement onset depending on the complexity of the movement) to app. ½ s prior to movement onset and the late component BP2 lasts from ½ s before to the onset of movement itself (s 0 in Fig. 1). BP1 is symmetrical even for unilateral movement, while BP2 is larger over the contralateral hemisphere
    corecore