375 research outputs found

    Kondo decoherence: finding the right spin model for iron impurities in gold and silver

    Full text link
    We exploit the decoherence of electrons due to magnetic impurities, studied via weak localization, to resolve a longstanding question concerning the classic Kondo systems of Fe impurities in the noble metals gold and silver: which Kondo-type model yields a realistic description of the relevant multiple bands, spin and orbital degrees of freedom? Previous studies suggest a fully screened spin SS Kondo model, but the value of SS remained ambiguous. We perform density functional theory calculations that suggest S=3/2S = 3/2. We also compare previous and new measurements of both the resistivity and decoherence rate in quasi 1-dimensional wires to numerical renormalization group predictions for S=1/2,1S=1/2,1 and 3/2, finding excellent agreement for S=3/2S=3/2.Comment: 4 pages, 4 figures, shortened for PR

    Evaporation of a packet of quantized vorticity

    Full text link
    A recent experiment has confirmed the existence of quantized turbulence in superfluid He3-B and suggested that turbulence is inhomogenous and spreads away from the region around the vibrating wire where it is created. To interpret the experiment we study numerically the diffusion of a packet of quantized vortex lines which is initially confined inside a small region of space. We find that reconnections fragment the packet into a gas of small vortex loops which fly away. We determine the time scale of the process and find that it is in order of magnitude agreement with the experiment.Comment: figure 1a,b,c and d, figure2, figure

    Slow 4He^{4}He Quenches Produce Fuzzy, Transient Vortices

    Full text link
    We examine the Zurek scenario for the production of vortices in quenches of liquid 4He^{4}He in the light of recent experiments. Extending our previous results to later times, we argue that short wavelength thermal fluctuations make vortices poorly defined until after the transition has occurred. Further, if and when vortices appear, it is plausible that that they will decay faster than anticipated from turbulence experiments, irrespective of quench rates.Comment: 4 pages, Revtex file, no figures Apart from a more appropriate title, this paper differs from its predecessor by including temperature, as well as pressure, quenche

    Dynamics of Quantum Phase Transition in an Array of Josephson Junctions

    Full text link
    We study the dynamics of the Mott insulator-superfluid quantum phase transition in a periodic 1D array of Josephson junctions. We show that crossing the critical point diabatically i.e. at a finite rate with a quench time τQ\tau_Q induces finite quantum fluctuations of the current around the loop proportional to τQ1/6\tau_Q^{-1/6}. This scaling could be experimentally verified with in array of weakly coupled Bose-Einstein condensates or superconducting grains.Comment: 4 pages in RevTex, 3 .eps figures; 2 references added; accepted for publication in Phys.Rev.Let

    Testing the Kibble-Zurek Scenario with Annular Josephson Tunnel Junctions

    Full text link
    In parallel with Kibble's description of the onset of phase transitions in the early universe, Zurek has provided a simple picture for the onset of phase transitions in condensed matter systems, strongly supported by agreement with experiments in He3. In this letter we show how experiments with annular Josephson tunnel Junctions can and do provide further support for this scenario.Comment: Revised version with correct formula for the Swihart velocity. The results are qualitatively the same as with the previous version but differ quantitatively. 4 pages, RevTe

    Defect Formation and Critical Dynamics in the Early Universe

    Get PDF
    We study the nonequilibrium dynamics leading to the formation of topological defects in a symmetry-breaking phase transition of a quantum scalar field with \lambda\Phi^4 self-interaction in a spatially flat, radiation-dominated Friedmann-Robertson-Walker Universe. The quantum field is initially in a finite-temperature symmetry-restored state and the phase transition develops as the Universe expands and cools. We present a first-principles, microscopic approach in which the nonperturbative, nonequilibrium dynamics of the quantum field is derived from the two-loop, two-particle-irreducible closed-time-path effective action. We numerically solve the dynamical equations for the two-point function and we identify signatures of topological defects in the infrared portion of the momentum-space power spectrum. We find that the density of topological defects formed after the phase transition scales as a power law with the expansion rate of the Universe. We calculate the equilibrium critical exponents of the correlation length and relaxation time for this model and show that the power law exponent of the defect density, for both overdamped and underdamped evolution, is in good agreement with the "freeze-out" scenario of Zurek. We introduce an analytic dynamical model, valid near the critical point, that exhibits the same power law scaling of the defect density with the quench rate. By incorporating the realistic quench of the expanding Universe, our approach illuminates the dynamical mechanisms important for topological defect formation. The observed power law scaling of the defect density with the quench rate, observered here in a quantum field theory context, provides evidence for the "freeze-out" scenario in three spatial dimensions.Comment: 31 pages, RevTex, 8 figures in EPS forma

    Protracted Respiratory Failure in a Case of Global Spinal Syringomyelia and Chiari Malformation Following Administration of Diazepam: Illustrative Case

    Get PDF
    BACKGROUND: Syringomyelia is defined as dilation of the spinal cord\u27s central canal and is often precipitated by skull base herniation disorders. Although respiratory failure (RF) can be associated with skull base abnormalities due to brainstem compression, most cases occur in pediatric patients and quickly resolve. The authors report the case of an adult patient with global spinal syringomyelia and Chiari malformation who developed refractory RF after routine administration of diazepam. OBSERVATIONS: A 31-year-old female presented with malnutrition, a 1-month history of right-sided weakness, and normal respiratory dynamics. After administration of diazepam prior to magnetic resonance imaging (MRI), she suddenly developed hypercapnic RF followed MRI and required intubation. MRI disclosed a Chiari malformation type I and syrinx extending from C1 to the conus medullaris. After decompressive surgery, her respiratory function progressively returned to baseline status, although 22 months after initial benzodiazepine administration, the patient continues to require nocturnal ventilation. LESSONS: Administration of central nervous system depressants should be closely monitored in patients with extensive syrinx formation given the potential to exacerbate diminished central respiratory drive. Early identification of syrinx in the context of Chiari malformation and hemiplegia should prompt clinical suspicion of underlying respiratory compromise and early involvement of intensive care consultants

    Unraveling critical dynamics: The formation and evolution of topological textures

    Get PDF
    We study the formation of topological textures in a nonequilibrium phase transition of an overdamped classical O(3) model in 2+1 dimensions. The phase transition is triggered through an external, time-dependent effective mass, parameterized by quench timescale \tau. When measured near the end of the transition the texture separation and the texture width scale respectively as \tau^(0.39 \pm 0.02) and \tau^(0.46 \pm 0.04), significantly larger than \tau^(0.25) predicted from the Kibble-Zurek mechanism. We show that Kibble-Zurek scaling is recovered at very early times but that by the end of the transition the power-laws result instead from a competition between the length scale determined at freeze-out and the ordering dynamics of a textured system. In the context of phase ordering these results suggest that the multiple length scales characteristic of the late-time ordering of a textured system derive from the critical dynamics of a single nonequilibrium correlation length. In the context of defect formation these results imply that significant evolution of the defect network can occur before the end of the phase transition. Therefore a quantitative understanding of the defect network at the end of the phase transition generally requires an understanding of both critical dynamics and the interactions among topological defects.Comment: 12 pages, revtex, 9 figures in eps forma

    Charge Delocalization in Self-Assembled Mixed-Valence Aromatic Cation Radicals

    Get PDF
    The spontaneous assembly of aromatic cation radicals (D+•) with their neutral counterpart (D) affords dimer cation radicals (D2+•). The intermolecular dimeric cation radicals are readily characterized by the appearance of an intervalence charge-resonance transition in the NIR region of their electronic spectra and by ESR spectroscopy. The X-ray crystal structure analysis and DFT calculations of a representative dimer cation radical (i.e., the octamethylbiphenylene dimer cation radical) have established that a hole (or single positive charge) is completely delocalized over both aromatic moieties. The energetics and the geometrical considerations for the formation of dimer cation radicals is deliberated with the aid of a series of cyclophane-like bichromophoric donors with drastically varied interplanar angles between the cofacially arranged aryl moieties. X-ray crystallography of a number of mixed-valence cation radicals derived from monochromophoric benzenoid donors established that they generally assemble in 1D stacks in the solid state. However, the use of polychromophoric intervalence cation radicals, where a single charge is effectively delocalized among all of the chromophores, can lead to higher-order assemblies with potential applications in long-range charge transport. As a proof of concept, we show that a single charge in the cation radical of a triptycene derivative is evenly distributed on all three benzenoid rings and this triptycene cation radical forms a 2D electronically coupled assembly, as established by X-ray crystallography

    Electrode Polarization Effects in Broadband Dielectric Spectroscopy

    Get PDF
    In the present work, we provide broadband dielectric spectra showing strong electrode polarization effects for various materials, belonging to very different material classes. This includes both ionic and electronic conductors as, e.g., salt solutions, ionic liquids, human blood, and colossal-dielectric-constant materials. These data are intended to provide a broad data base enabling a critical test of the validity of phenomenological and microscopic models for electrode polarization. In the present work, the results are analyzed using a simple phenomenological equivalent-circuit description, involving a distributed parallel RC circuit element for the modeling of the weakly conducting regions close to the electrodes. Excellent fits of the experimental data are achieved in this way, demonstrating the universal applicability of this approach. In the investigated ionically conducting materials, we find the universal appearance of a second dispersion region due to electrode polarization, which is only revealed if measuring down to sufficiently low frequencies. This indicates the presence of a second charge-transport process in ionic conductors with blocking electrodes.Comment: 9 pages, 6 figures, experimental data are provided in electronic form (see "Data Conservancy"
    corecore