824 research outputs found
On the absolute value of the air-fluorescence yield
The absolute value of the air-fluorescence yield is a key parameter for the
energy reconstruction of extensive air showers registered by fluorescence
telescopes. In previous publications, we reported a detailed Monte Carlo
simulation of the air-fluorescence generation that allowed the theoretical
evaluation of this parameter. This simulation has been upgraded in the present
work. As a result, we determined an updated absolute value of the fluorescence
yield of 7.9+-2.0 ph/MeV for the band at 337 nm in dry air at 800 hPa and 293
K, in agreement with experimental values. We have also performed a critical
analysis of available absolute measurements of the fluorescence yield with the
assistance of our simulation. Corrections have been applied to some
measurements to account for a bias in the evaluation of the energy deposition.
Possible effects of other experimental aspects have also been discussed. From
this analysis, we determined an average fluorescence yield of 7.04+-0.24 ph/MeV
at the above conditions.Comment: Submitted to Astroparticle Physic
Comparison of available measurements of the absolute air-fluorescence yield and determination of its global average value
Experimental results of the absolute air-fluorescence yield are given very
often in different units (photons/MeV or photons/m) and for different
wavelength intervals. In this work we present a comparison of available results
normalized to its value in photons/MeV for the 337 nm band at 1013 hPa and 293
K. The conversion of photons/m to photons/MeV requires an accurate
determination of the energy deposited by the electrons in the field of view of
the experimental set-up. We have calculated the energy deposition for each
experiment by means of a detailed Monte Carlo simulation and the results have
been compared with those assumed or calculated by the authors. As a result,
corrections to the reported fluorescence yields are proposed. These corrections
improve the compatibility between measurements in such a way that a reliable
average value with uncertainty at the level of 5% is obtained.Comment: 13 pages, 6 figures. To appear in the Proocedings of the
International Symposium on the Recent Progress of Ultra-high Energy Cosmic
Ray Observations (UHECR2010), Nagoya, Japan, 201
Improved model for the analysis of air fluorescence induced by electrons
A model recently proposed for the calculation of air-fluorescence yield
excited by electrons is revisited. Improved energy distributions of secondary
electrons and a more realistic Monte Carlo simulation including some additional
processes have allowed us to obtain more accurate results. The model is used to
study in detail the relationship between fluorescence intensity and deposited
energy in a wide range of primary energy (keVs - GeVs). In addition,
predictions on the absolute value of the fluorescence efficiency in the absence
of collisional quenching will be presented and compared with available
experimental data.Comment: Contribution to the 5th Fluorescence Workshop, El Escorial, Madrid,
Spain, September 2007, to appear in Nuclear Instruments and Methods A.
Revised version.- More details on the comparison with experimental dat
Hinting at primary composition using asymmetries in time distributions
Evidence of azimuthal asymmetries in the time structure and signal size have
been found in non-vertical showers at the Pierre Auger Observatory. It has been
previously shown that the asymmetry in time distributions offers a new
possibility for the determination of the mass composition. New studies have
demonstrated that the dependence of the asymmetry parameter in the rise-time
and fall-time distributions with sec(theta) shows a clear peak. Both, the
position of the peak, X_asymax, and the size of the asymmetry at X_asymax are
sensitive to primary mass composition and have a small dependence on energy. In
this paper a study of the discriminating power of the new observables to
separate primary species is presented.Comment: To be published in the Proceedings of 29th International Cosmic Ray
Conference (ICRC 2005), Pune, India, August 3-10, 200
- …
