1,456 research outputs found
Experimental evidence for the role of cantori as barriers in a quantum system
We investigate the effect of cantori on momentum diffusion in a quantum
system. Ultracold caesium atoms are subjected to a specifically designed
periodically pulsed standing wave. A cantorus separates two chaotic regions of
the classical phase space. Diffusion through the cantorus is classically
predicted. Quantum diffusion is only significant when the classical phase-space
area escaping through the cantorus per period greatly exceeds Planck's
constant. Experimental data and a quantum analysis confirm that the cantori act
as barriers.Comment: 19 pages including 9 figures, Accepted for publication in Physical
Review E in March 199
Gerhard Lang (21.10.1924–19.6.2016)
Gerhard Lang, one of the great German botanists and palaeoecologists of the 20th century, died on the 19th June 2016 in Biberach, southern Germany. He will be greatly missed by his friends and colleagues, not only for his vast expertise in botany, ecology, biogeography, and vegetation history, but also for his integrity, kindness, and humour. For many of his students and post-doctoral fellows he was not only an excellent teacher and mentor, but also an important role model
Regularity for eigenfunctions of Schr\"odinger operators
We prove a regularity result in weighted Sobolev spaces (or
Babuska--Kondratiev spaces) for the eigenfunctions of a Schr\"odinger operator.
More precisely, let K_{a}^{m}(\mathbb{R}^{3N}) be the weighted Sobolev space
obtained by blowing up the set of singular points of the Coulomb type potential
V(x) = \sum_{1 \le j \le N} \frac{b_j}{|x_j|} + \sum_{1 \le i < j \le N}
\frac{c_{ij}}{|x_i-x_j|}, x in \mathbb{R}^{3N}, b_j, c_{ij} in \mathbb{R}. If u
in L^2(\mathbb{R}^{3N}) satisfies (-\Delta + V) u = \lambda u in distribution
sense, then u belongs to K_{a}^{m} for all m \in \mathbb{Z}_+ and all a \le 0.
Our result extends to the case when b_j and c_{ij} are suitable bounded
functions on the blown-up space. In the single-electron, multi-nuclei case, we
obtain the same result for all a<3/2.Comment: to appear in Lett. Math. Phy
Quantum and classical chaos for a single trapped ion
In this paper we investigate the quantum and classical dynamics of a single
trapped ion subject to nonlinear kicks derived from a periodic sequence of
Guassian laser pulses. We show that the classical system exhibits diffusive
growth in the energy, or 'heating', while quantum mechanics suppresses this
heating. This system may be realized in current single trapped-ion experiments
with the addition of near-field optics to introduce tightly focussed laser
pulses into the trap.Comment: 8 pages, REVTEX, 8 figure
Scent of danger: floc formation by a freshwater bacterium is induced by supernatants from a predator-prey coculture
We investigated predator-prey interactions in a model system consisting of the bacterivorous flagellate Poterioochromonas sp. strain DS and the freshwater bacterium Sphingobium sp. strain Z007. This bacterial strain tends to form a subpopulation of grazing-resistant microscopic flocs, presumably by aggregation. Enhanced formation of such flocs could be demonstrated in static batch culture experiments in the presence of the predator. The ratio of aggregates to single cells reached >0.1 after 120 h of incubation in an oligotrophic growth medium. The inoculation of bacteria into supernatants from cocultures of bacteria and flagellates (grown in oligotrophic or in rich media) also resulted in a substantially higher level of floc formation than that in supernatants from bacterial monocultures only. After separation of supernatants on a C(18) cartridge, the aggregate-inducing activity could be assigned to the 50% aqueous methanolic fraction, and further separation of this bioactive fraction could be achieved by high-pressure liquid chromatography. These results strongly suggest the involvement of one or several chemical factors in the induction of floc formation by Sphingobium sp. strain Z007 that are possibly released into the surrounding medium by flagellate grazing
Evaluation of Tibial Fixation Devices for Quadrupled Hamstring ACL Reconstruction
BACKGROUND
Shortcomings to tibial-side fixation have been reported as causes of failure after anterior cruciate ligament reconstruction. Adjustable-loop suspensory devices have become popular; however, no comparison with hybrid fixation (ie, interference screw and cortical button) exists to our knowledge.
PURPOSE
The purpose of this study was to compare the biomechanical properties of adjustable loop devices (ALDs) in full-tunnel and closed-socket configurations in relation to hybrid fixation. We hypothesized that primary stability of fixation by a tibial ALD will not be inferior to hybrid fixation.
STUDY DESIGN
Controlled laboratory study.
METHODS
Tibial fixation of a quadrupled tendon graft was biomechanically investigated in a porcine tibia-bovine tendon model using 5 techniques (n = 6 specimens each). The tested constructs included hybrid fixation with a cortical fixation button and interference screw (group 1), single cortical fixation with the full-tunnel technique using an open-suture strand button (group 2) or an ALD (group 3), or closed-socket fixation using 2 different types of ALDs (groups 4 and 5). Each specimen was evaluated using a materials testing machine (1000 cycles from 50-250 N and pull to failure). Force at failure, cyclic displacement, stiffness, and ability to pretension the graft during insertion were compared among the groups.
RESULTS
No differences in ultimate load to failure were found between the ALD constructs (groups 3, 4, and 5) and hybrid fixation (group 1). Cyclic displacement was significantly higher in group 2 vs all other groups (P < .001); however, no difference was observed in groups 3, 4, and 5 as compared with group 1. The remaining tension on the construct after fixation was significantly higher in groups 3 and 4 vs groups 1, 2, and 5 (P < .02 for all comparisons), irrespective of whether a full-tunnel or closed-socket approach was used.
CONCLUSION
Tibial anterior cruciate ligament graft fixation with knotless ALDs achieved comparable results with hybrid fixation in the full-tunnel and closed-socket techniques. The retention of graft tension appears to be biomechanically more relevant than tunnel type.
CLINICAL RELEVANCE
The study findings emphasize the importance of the tension at which fixation is performed
Estimating the uptake of traffic-derived NO2 from 15N abundance in Norway spruce needles
The 15N ratio of nitrogen oxides (NOx) emitted from vehicles, measured in the air adjacent to a highway in the Swiss Middle Land, was very high [δ15N(NO2) = +5.7‰]. This high 15N abundance was used to estimate long-term NO2 dry deposition into a forest ecosystem by measuring δ15N in the needles and the soil of potted and autochthonous spruce trees [Picea abies (L.) Karst] exposed to NO2 in a transect orthogonal to the highway. δ15N in the current-year needles of potted trees was 2.0‰ higher than that of the control after 4 months of exposure close to the highway, suggesting a 25% contribution to the N-nutrition of these needles. Needle fall into the pots was prevented by grids placed above the soil, while the continuous decomposition of needle litter below the autochthonous trees over previous years has increased δ15N values in the soil, resulting in parallel gradients of δ15N in soil and needles with distance from the highway. Estimates of NO2 uptake into needles obtained from the δ15N data were significantly correlated with the inputs calculated with a shoot gas exchange model based on a parameterisation widely used in deposition modelling. Therefore, we provide an indication of estimated N inputs to forest ecosystems via dry deposition of NO2 at the receptor level under field conditions
Recommended from our members
Late winter temperature response to large tropical volcanic eruptions in temperate western North America: Relationship to ENSO phases
February–March temperature reconstructions in western North America from 1500–1980 in the Common Era (CE) are used to evaluate, from a regional perspective, the hypothesis that radiative forcing by large tropical volcanic eruptions induces a tendency in the climate system towards an early post-event El Niño (EN) response followed by a delayed La Niña (LN) response. Post-event spatial composites using superposed epoch analysis (SEA) detect indications for an EN-like pattern in post-event Years 1–2; this result, however, is sensitive to the set of eruptions evaluated. Highly significant LN-like patterns are also observed for two eruptions during Year 1. In contrast, a clear and unique LN-like response is found in both evaluated eruption sets during Years 3–5; Year 3 in particular represents the time of strongest post-event response. No significant EN-like patterns occur during these years. The relative homogeneity of the SEA response for each post-event year is evaluated in terms of the ratio of the amplitude of the SEA composite to its standard deviation across the eruption events. In relation to the same metric determined from random-event-year SEAs, these signal-to-noise ratios are most highly significant in the portions of the domain with the strongest anomalies in Years 1–5, especially Year 3. The signal-to-noise ratios tend towards uniformly low and insignificant values beyond the first half-decade after the eruption, indicating generally reduced coherence across events. In relation to the larger-scale circulation, post-eruption 500mb February–March geopotential height composites from the 20th Century Reanalysis show ENSO-type features that are largely consistent with the SEA results from the primary eruption set during Year 1, but are inconsistent with the EN-like pattern exhibited by the second eruption set during Years 1–2. In Year 3, the pressure composite over North America and the adjacent Pacific and Atlantic is strongly LN-like, consistent with all SEA results; similarly, weakening coherence across events as time progresses beyond Year 3 is also consistent with more variable pressure composites noted after that time. The relatively robust character of the delayed LN-like response is evaluated in terms of the dynamic rebound of the climate system towards its initial energy balance as the radiative impact of immediate post-eruption aerosol cooling dissipates. The LN-like SEA temperature response in Years 3–5 exhibits a slight shift of its southern warm anomaly to the north and west relative to pure composite LN conditions, which is detected as a specifically post-eruption feature in the region
Coherent Control of Quantum Chaotic Diffusion
Extensive coherent control over quantum chaotic diffusion using the kicked
rotor model is demonstrated and its origin in deviations from random matrix
theory is identified. Further, the extent of control in the presence of
external decoherence is established. The results are relevant to both areas of
quantum chaos and coherent control.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let
A Numerical Investigation of the Effects of Classical Phase Space Structure on a Quantum System
We present a detailed numerical study of a chaotic classical system and its
quantum counterpart. The system is a special case of a kicked rotor and for
certain parameter values possesses cantori dividing chaotic regions of the
classical phase space. We investigate the diffusion of particles through a
cantorus; classical diffusion is observed but quantum diffusion is only
significant when the classical phase space area escaping through the cantorus
per kicking period greatly exceeds Planck's constant. A quantum analysis
confirms that the cantori act as barriers. We numerically estimate the
classical phase space flux through the cantorus per kick and relate this
quantity to the behaviour of the quantum system. We introduce decoherence via
environmental interactions with the quantum system and observe the subsequent
increase in the transport of quantum particles through the boundary.Comment: 15 pages, 22 figure
- …