31 research outputs found
Targeted RNA-Sequencing Enables Detection of Relevant Translocations and Single Nucleotide Variants and Provides a Method for Classification of Hematological Malignancies-RANKING
BACKGROUND: Patients with hematological malignancies (HMs) carry a wide range of chromosomal and molecular abnormalities that impact their prognosis and treatment. Since no current technique can detect all relevant abnormalities, technique(s) are chosen depending on the reason for referral, and abnormalities can be missed. We tested targeted transcriptome sequencing as a single platform to detect all relevant abnormalities and compared it to current techniques. MATERIAL AND METHODS: We performed RNA-sequencing of 1385 genes (TruSight RNA Pan-Cancer, Illumina) in bone marrow from 136 patients with a primary diagnosis of HM. We then applied machine learning to expression profile data to perform leukemia classification, a method we named RANKING. Gene fusions for all the genes in the panel were detected, and overexpression of the genes EVI1, CCND1, and BCL2 was quantified. Single nucleotide variants/indels were analyzed in acute myeloid leukemia (AML), myelodysplastic syndrome and patients with acute lymphoblastic leukemia (ALL) using a virtual myeloid (54 genes) or lymphoid panel (72 genes). RESULTS: RANKING correctly predicted the leukemia classification of all AML and ALL samples and improved classification in 3 patients. Compared to current methods, only one variant was missed, c.2447A>T in KIT (RT-PCR at 10(-4)), and BCL2 overexpression was not seen due to a t(14; 18)(q32; q21) in 2% of the cells. Our RNA-sequencing method also identified 6 additional fusion genes and overexpression of CCND1 due to a t(11; 14)(q13; q32) in 2 samples. CONCLUSIONS: Our combination of targeted RNA-sequencing and data analysis workflow can improve the detection of relevant variants, and expression patterns can assist in establishing HM classification
Low prevalence of H. pylori Infection in HIV-Positive Patients in the Northeast of Brazil
<p>Abstract</p> <p>Background</p> <p>This study conducted in Northeastern Brazil, evaluated the prevalence of <it>H. pylori </it>infection and the presence of gastritis in HIV-infected patients.</p> <p>Methods</p> <p>There were included 113 HIV-positive and 141 age-matched HIV-negative patients, who underwent upper gastrointestinal endoscopy for dyspeptic symptoms. <it>H. pylori </it>status was evaluated by urease test and histology.</p> <p>Results</p> <p>The prevalence of <it>H. pylori </it>infection was significantly lower (p < 0.001) in HIV-infected (37.2%) than in uninfected (75.2%) patients. There were no significant differences between <it>H. pylori </it>status and gender, age, HIV viral load, antiretroviral therapy and the use of antibiotics. A lower prevalence of <it>H. pylori </it>was observed among patients with T CD4 cell count below 200/mm<sup>3</sup>; however, it was not significant. Chronic active antral gastritis was observed in 87.6% of the HIV-infected patients and in 780.4% of the control group (p = 0.11). <it>H. pylori </it>infection was significantly associated with chronic active gastritis in the antrum in both groups, but it was not associated with corpus chronic active gastritis in the HIV-infected patients.</p> <p>Conclusion</p> <p>We demonstrated that the prevalence of <it>H. pylori </it>was significantly lower in HIV-positive patients compared with HIV-negative ones. However, corpus gastritis was frequently observed in the HIV-positive patients, pointing to different mechanisms than <it>H. pylori </it>infection in the genesis of the lesion.</p
Feasibility of Follow-Up Studies and Reclassification in Spinocerebellar Ataxia Gene Variants of Unknown Significance
Spinocerebellar ataxia (SCA) is a heterogeneous group of neurodegenerative disorders with autosomal dominant inheritance. Genetic testing for SCA leads to diagnosis, prognosis and risk assessment for patients and their family members. While advances in sequencing and computing technologies have provided researchers with a rapid expansion in the genetic test content that can be used to unravel the genetic causes that underlie diseases, the large number of variants with unknown significance (VUSes) detected represent challenges. To minimize the proportion of VUSes, follow-up studies are needed to aid in their reclassification as either (likely) pathogenic or (likely) benign variants. In this study, we addressed the challenge of prioritizing VUSes for follow-up using (a combination of) variant segregation studies, 3D protein modeling, in vitro splicing assays and functional assays. Of the 39 VUSes prioritized for further analysis, 13 were eligible for follow up. We were able to reclassify 4 of these VUSes to LP, increasing the molecular diagnostic yield by 1.1%. Reclassification of VUSes remains difficult due to limited possibilities for performing variant segregation studies in the classification process and the limited availability of routine functional tests
Clinical Value of EGFR Copy Number Gain Determined by Amplicon-Based Targeted Next Generation Sequencing in Patients with EGFR-Mutated NSCLC
Background The clinical relevance of epidermal growth factor receptor (EGFR) copy number gain in patients with EGFR mutated advanced non-small cell lung cancer on first-line tyrosine kinase inhibitor treatment has not been fully elucidated. Objective We aimed to estimate EGFR copy number gain using amplicon-based next generation sequencing data and explored its prognostic value. Patients and Methods Next generation sequencing data were obtained for 1566 patients with non-small cell lung cancer. EGFR copy number gain was defined based on an increase in EGFR read counts relative to internal reference amplicons and normal controls in combination with a modified z-score >= 3.5. Clinical follow-up data were available for 60 patients treated with first-line EGFR-tyrosine kinase inhibitors. Results Specificity and sensitivity of next generation sequencing-based EGFR copy number estimations were above 90%. EGFR copy number gain was observed in 27.9% of EGFR mutant cases and in 7.4% of EGFR wild-type cases. EGFR gain was not associated with progression-free survival but showed a significant effect on overall survival with an adjusted hazard ratio of 3.14 (95% confidence interval 1.46-6.78, p = 0.003). Besides EGFR copy number gain, osimertinib in second or subsequent lines of treatment and the presence of T790M at relapse revealed significant effects in a multivariate analysis with adjusted hazard ratio of 0.43 (95% confidence interval 0.20-0.91, p = 0.028) and 0.24 (95% confidence interval 0.1-0.59, p = 0.001), respectively. Conclusions Pre-treatment EGFR copy number gain determined by amplicon-based next generation sequencing data predicts worse overall survival in EGFR-mutated patients treated with first-line EGFR-tyrosine kinase inhibitors. T790M at relapse and subsequent treatment with osimertinib predict longer overall survival
The Pediatric Cell Atlas: defining the growth phase of human development at single-cell resolution
Single-cell gene expression analyses of mammalian tissues have uncovered profound stage-specific molecular regulatory phenomena that have changed the understanding of unique cell types and signaling pathways critical for lineage determination, morphogenesis, and growth. We discuss here the case for a Pediatric Cell Atlas as part of the Human Cell Atlas consortium to provide single-cell profiles and spatial characterization of gene expression across human tissues and organs. Such data will complement adult and developmentally focused HCA projects to provide a rich cytogenomic framework for understanding not only pediatric health and disease but also environmental and genetic impacts across the human lifespan
The Pediatric Cell Atlas:Defining the Growth Phase of Human Development at Single-Cell Resolution
Single-cell gene expression analyses of mammalian tissues have uncovered profound stage-specific molecular regulatory phenomena that have changed the understanding of unique cell types and signaling pathways critical for lineage determination, morphogenesis, and growth. We discuss here the case for a Pediatric Cell Atlas as part of the Human Cell Atlas consortium to provide single-cell profiles and spatial characterization of gene expression across human tissues and organs. Such data will complement adult and developmentally focused HCA projects to provide a rich cytogenomic framework for understanding not only pediatric health and disease but also environmental and genetic impacts across the human lifespan