31 research outputs found

    Evidence that the multiflorine‐derived substituted quinazolidine 55P0251 augments insulin secretion and lowers blood glucose via antagonism at α2‐adrenoceptors in mice

    Get PDF
    To investigate the mechanism of action of 55P0251, a novel multiflorine‐derived substituted quinazolidine that augments insulin release and lowers blood glucose in rodents, but does not act via mechanisms addressed by any antidiabetic agent in clinical use.Materials and MethodsUsing male mice, we determined the effects of 55P0251 on glucose tolerance, insulin secretion from isolated islets and blood oxygen saturation, including head‐to‐head comparison of 55P0251 to its inverted enantiomer 55P0250, as well as to other anti‐hyperglycaemic multiflorine derivatives discovered in our programme.Results55P0251 was clearly superior to its inverted enantiomer in the glucose tolerance test (area under the curve: 11.3 mg/kg 55P0251, 1.19 ± 0.04 min*mol/L vs 55P0250, 1.80 ± 0.04 min*mol/L; P P P ConclusionsOur findings suggest that 55P0251 and related multiflorine derivatives are to be categorized as α2‐adrenoceptor antagonists with potential to lower blood glucose by blocking α2A‐adrenoceptors on pancreatic ÎČ cells.</p

    Paraoxonase-1 is related to inflammation, fibrosis and PPAR delta in experimental liver disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Paraoxonase-1 (PON1) is an antioxidant enzyme synthesized by the liver. It protects against liver impairment and attenuates the production of the pro-inflammatory monocyte chemoattractant protein-1 (MCP-1). We investigated the relationships between hepatic PON1 and MCP-1 expression in rats with liver disease and explored the possible molecular mechanisms involved.</p> <p>Methods</p> <p>CCl<sub>4 </sub>was administered for up to 12 weeks to induce liver damage. Serum and hepatic levels of PON1 and MCP-1, their gene and protein expression, nuclear transcription factors, and histological and biochemical markers of liver impairment were measured.</p> <p>Results</p> <p>High levels of PON1 and MCP-1 expression were observed at 12<sup>th </sup>week in the hepatocytes surrounding the fibrous septa and inflammatory areas. CCl<sub>4</sub>-administered rats had an increased hepatic PON1 concentration that was related to decreased gene transcription and inhibited protein degradation. Decreased PON1 gene transcription was associated with PPARÎŽ expression. These changes were accompanied by increased hepatic MCP-1 concentration and gene expression. There were significant direct relationships between hepatic PON1 and MCP-1 concentrations (P = 0.005) and between PON1 and the amount of activated stellate cells (P = 0.001).</p> <p>Conclusion</p> <p>Our results from this experimental model suggest a hepato-protective role for PON1 against inflammation, fibrosis and liver disease mediated by MCP-1.</p

    Getting to the heart of the matter: Does aberrant interoceptive processing contribute towards emotional eating?

    Get PDF
    According to estimates from Public Health England, by 2034 70% of adults are expected to be overweight or obese, therefore understanding the underpinning aetiology is a priority. Eating in response to negative affect contributes towards obesity, however, little is known about the underlying mechanisms. Evidence that visceral afferent signals contribute towards the experience of emotion is accumulating rapidly, with the emergence of new influential models of ‘active inference’. No longer viewed as a ‘bottom up’ process, new interoceptive facets based on ‘top down’ predictions have been proposed, although at present it is unclear which aspects of interoception contribute to aberrant eating behaviour and obesity. Study one examined the link between eating behaviour, body mass index and the novel interoceptive indices; interoceptive metacognitive awareness (IAw) and interoceptive prediction error (IPE), as well as the traditional measures; interoceptive accuracy (IAc) and interoceptive sensibility (IS). The dissociation between these interoceptive indices was confirmed. Emotional eaters were characterised by a heightened interoceptive signal but reduced meta-cognitive awareness of their interoceptive abilities. In addition, emotional eating correlated with IPE; effects that could not be accounted for by differences in anxiety and depression. Study two confirmed the positive association between interoceptive accuracy and emotional eating using a novel unbiased heartbeat discrimination task based on the method of constant stimuli. Results reveal new and important mechanistic insights into the processes that may underlie problematic affect regulation in overweight populations

    Chronic and acute effects of thiazolidinediones BM13.1258 and BM15.2054 on rat skeletal muscle glucose metabolism

    No full text
    1. New thiazolidinediones BM13.1258 and BM15.2054 were studied with regard to their PPARÎł-agonistic activities and to their acute and chronic effects on glucose metabolism in soleus muscle strips from lean and genetically obese rats. 2. Both BM13.1258 and BM15.2054 revealed to be potent PPARÎł-activators in transient transfection assays in vitro. 3. In insulin-resistant obese rats, but not in lean rats, 10 days of oral treatment with either compound increased the stimulatory effect of insulin on muscle glycogen synthesis to a similar extent (insulin-induced increment in ÎŒmol glucose incorporated into glycogen g(−1) h(−1): control, +1.19±0.28; BM13.1258, +2.50±0.20; BM15.2054, +2.55±0.46; P<0.05 vs control each). 4. In parallel to insulin sensitization, mean glucose oxidation increased insulin-independently in response to BM13.1258 (to 191 and 183% of control in the absence and presence of insulin, respectively; P<0.01 each), which was hardly seen in response to BM15.2054 (to 137 and 124% of control, respectively; ns). 5. Comparable effects on PPARÎł activation and on amelioration of insulin resistance by BM13.1258 and BM15.2054 were therefore opposed by different effects on glucose oxidation. 6. In contrast to chronic oral treatment, acute exposure of muscles to BM13.1258 or BM15.2054 in vitro elicited a distinct catabolic response of glucose metabolism in specimens from both lean and obese rats. 7. The results provide evidence that BM13.1258 and BM15.2054 can affect muscle glucose metabolism via more than one mechanism of action. 8. Further efforts are required to clarify, to what extent other mechanisms besides insulin sensitization via the activation of PPARÎł are involved in the antidiabetic actions of thiazolidinediones
    corecore