22 research outputs found
Computational and experimental investigations on a tuneable spatial heterodyne spectrometer
Spatial heterodyne spectrometers (SHS) are interference based instruments for obtaining spectroscopic information in the UV and visible ranges. In this current study we are representing our experimental and computational findings about a tuneable SHS instrument
Liquid-cooled modular gas cell system for high-order harmonic generation using high average power laser systems
We present the design and implementation of a new, modular gas target suitable for high-order harmonic generation using high average power lasers. To ensure thermal stability in this high heat load environment, we implement an appropriate liquid cooling system. The system can be used in multiple-cell configurations, allowing us to control the cell length and aperture size. The cell design was optimized with heat and flow simulations for thermal characteristics, vacuum compatibility, and generation medium properties. Finally, the cell system was experimentally validated by conducting high-order harmonic generation measurements using the 100 kHz high average power HR-1 laser system at the Extreme Light Infrastructure Attosecond Light Pulse Source (ELI ALPS) facility. Such a robust, versatile, and stackable gas cell arrangement can easily be adapted to different experimental geometries in both table-top laboratory systems and user-oriented facilities, such as ELI ALPS
Generation of high-order harmonics with tunable photon energy and spectral width using double pulses
This work theoretically investigates high-order harmonic generation in rare-gas atoms driven by two temporally delayed ultrashort laser pulses. Apart from their temporal delay, the two pulses are identical. Using a single-atom model of the laser-matter interaction it is shown that the photon energy of the generated harmonics is controllable within the range of one eV-a bandwidth comparable to the photon energy of the fundamental field-by varying the time delay between the generating laser pulses. It is also demonstrated that high-order harmonics generated by double pulses have advantageous characteristics, which mimick certain properties of an extreme ultraviolet monochromator. With the proposed method, a simpler setup at a much lower cost and comparatively higher spectral yield can be implemented in contrast to other approaches
Ion acceleration with few-cycle relativistic laser pulses from foil targets
Ion acceleration resulting from the interaction of 11 fs laser pulses of ∼ 35 mJ energy with ultrahigh contrast (<10 −10 ) and 10 19 W cm −2 peak intensity with foil targets made of various materials and thicknesses at normal (0°) and 45° laser incidence is investigated. The maximum energy of the protons reached ∼1.4 MeV accelerated in the laser propagation direction and ∼1.2 MeV in the opposite direction from a formvar target. The energy conversion efficiency from the laser to the proton beam is estimated to be as high as ∼1.4% at 45° laser incidence using a 51 nm thick Al target. The high laser contrast indicates the predominance of vacuum heating via Brunel’s effect as an absorption mechanism involving a tiny pre-plasma at the target front. The experimental results are in reasonable agreement with theoretical estimates, where proton acceleration from the target front side in the backward direction is well explained by the Coulomb explosion of a charged cavity formed in a tiny pre-plasma, while forward proton acceleration is likely to be a two-step process: protons are first accelerated in the target front-side cavity and then further boosted in energy through the target back side via the target normal sheath acceleration (TNSA) mechanism