3,048 research outputs found

    Current-voltage correlations in interferometers

    Full text link
    We investigate correlations of current at contacts and voltage fluctuations at voltage probes coupled to interferometers. The results are compared with correlations of current and occupation number fluctuations at dephasing probes. We use a quantum Langevin approach for the average quantities and their fluctuations. For higher order correlations we develop a stochastic path integral approach and find the generating functions of voltage or occupation number fluctuations. We also derive a generating function for the joint distribution of voltage or occupation number at the probe and current fluctuations at a terminal of a conductor. For energy independent scattering we found earlier that the generating function of current cumulants in interferometers with a one-channel dephasing or voltage probe are identical. Nevertheless, the distribution function for voltage and the distribution function for occupation number fluctuations differ, the latter being broader than that of former in all examples considered here.Comment: 23 pages, 10 figures, minor changes, additional appendix, added reference

    Nonmonotonic energy harvesting efficiency in biased exciton chains

    Get PDF
    We theoretically study the efficiency of energy harvesting in linear exciton chains with an energy bias, where the initial excitation is taking place at the high-energy end of the chain and the energy is harvested (trapped) at the other end. The efficiency is characterized by means of the average time for the exciton to be trapped after the initial excitation. The exciton transport is treated as the intraband energy relaxation over the states obtained by numerically diagonalizing the Frenkel Hamiltonian that corresponds to the biased chain. The relevant intraband scattering rates are obtained from a linear exciton-phonon interaction. Numerical solution of the Pauli master equation that describes the relaxation and trapping processes, reveals a complicated interplay of factors that determine the overall harvesting efficiency. Specifically, if the trapping step is slower than or comparable to the intraband relaxation, this efficiency shows a nonmonotonic dependence on the bias: it first increases when introducing a bias, reaches a maximum at an optimal bias value, and then decreases again because of dynamic (Bloch) localization of the exciton states. Effects of on-site (diagonal) disorder, leading to Anderson localization, are addressed as well.Comment: 9 pages, 6 figures, to appear in Journal of Chemical Physic

    Parity detection and entanglement with a Mach-Zehnder interferometer

    Full text link
    A parity meter projects the state of two qubits onto two subspaces with different parities, the states in each parity class being indistinguishable. It has application in quantum information for its entanglement properties. In our work we consider the electronic Mach-Zehnder interferometer (MZI) coupled capacitively to two double quantum dots (DQDs), one on each arm of the MZI. These charge qubits couple linearly to the charge in the arms of the MZI. A key advantage of an MZI is that the qubits are well separated in distance so that mutual interaction between them is avoided. Assuming equal coupling between both DQDs and the arms and the same bias for each DQD, this setup usually detects three different currents, one for the odd states and two for each even state. Controlling the magnetic flux of the MZI, we can operate the MZI as a parity meter: only two currents are measured at the output, one for each parity class. In this configuration, the MZI acts as an ideal detector, its Heisenberg efficiency being maximal. For a class of initial states, the initially unentangled DQDs become entangled through the parity measurement process with probability one.Comment: 9 pages, 2 figure

    A Population of Teraelectronvolt Pulsar Wind Nebulae in the H.E.S.S. Galactic Plane Survey

    Full text link
    The most numerous source class that emerged from the H.E.S.S. Galactic Plane Survey are Pulsar Wind Nebulae (PWNe). The 2013 reanalysis of this survey, undertaken after almost 10 years of observations, provides us with the most sensitive and most complete census of gamma-ray PWNe to date. In addition to a uniform analysis of spectral and morphological parameters, for the first time also flux upper limits for energetic young pulsars were extracted from the data. We present a discussion of the correlation between energetic pulsars and TeV objects, and their respective properties. We will put the results in context with the current theoretical understanding of PWNe and evaluate the plausibility of previously non-established PWN candidates.Comment: 4 pages, 5 figures. In Proceedings of the 33rd International Cosmic Ray Conference (ICRC2013), Rio de Janeiro (Brazil

    Exactly soluble model of resonant energy transfer between molecules

    Full text link
    F\"orster's theory of resonant energy transfer (FRET) predicts the strength and range of exciton transport between separated molecules. We introduce an exactly soluble model for FRET which reproduces F\"orster's results as well as incorporating quantum coherence effects. As an application the model is used to analyze a system composed of quantum dots and the protein bacteriorhodopsin.Comment: 10 pages, 2 figure

    Strong field ionization to multiple electronic states in water

    Full text link
    High harmonic spectra show that laser-induced strong field ionization of water has a significant contribution from an inner-valence orbital. Our experiment uses the ratio of H2O and D2O high harmonic yields to isolate the characteristic nuclear motion of the molecular ionic states. The nuclear motion initiated via ionization of the highest occupied molecular orbital (HOMO) is small and is expected to lead to similar harmonic yields for the two isotopes. In contrast, ionization of the second least bound orbital (HOMO-1) exhibits itself via a strong bending motion which creates a significant isotope effect. We elaborate on this interpretation by simulating strong field ionization and high harmonic generation from the water isotopes using the time-dependent Schr\"odinger equation. We expect that this isotope marking scheme for probing excited ionic states in strong field processes can be generalized to other molecules
    • …
    corecore