46 research outputs found

    Quantum Noise Correlation Experiments with Ultracold Atoms

    Full text link
    Noise correlation analysis is a detection tool for spatial structures and spatial correlations in the in-trap density distribution of ultracold atoms. In this book chapter, we discuss the implementation, properties and limitations of the method applied to ensembles of ultracold atoms in optical lattices, and describe some instances where it has been applied.Comment: 26 pages, 14 figures - To appear as Chapter 8 in "Quantum gas experiments - exploring many-body states," P. T\"orm\"a, K. Sengstock, eds. (Imperial College Press, to be published 2014

    Localized magnetic moments with tunable spin exchange in a gas of ultracold fermions

    Full text link
    We report on the experimental realization of a state-dependent lattice for a two-orbital fermionic quantum gas with strong interorbital spin exchange. In our state-dependent lattice, the ground and metastable excited electronic states of 173^{173}Yb take the roles of itinerant and localized magnetic moments, respectively. Repulsive on-site interactions in conjunction with the tunnel mobility lead to spin exchange between mobile and localized particles, modeling the coupling term in the well-known Kondo Hamiltonian. In addition, we find that this exchange process can be tuned resonantly by varying the on-site confinement. We attribute this to a resonant coupling to center-of-mass excited bound states of one interorbital scattering channel

    Phase coherence of an atomic Mott insulator

    Full text link
    We investigate the phase coherence properties of ultracold Bose gases in optical lattices, with special emphasis on the Mott insulating phase. We show that phase coherence on short length scales persists even deep in the insulating phase, preserving a finite visibility of the interference pattern observed after free expansion. This behavior can be attributed to a coherent admixture of particle/hole pairs to the perfect Mott state for small but finite tunneling. In addition, small but reproducible ``kinks'' are seen in the visibility, in a broad range of atom numbers. We interpret them as signatures for density redistribution in the shell structure of the trapped Mott insulator

    Resonant control of spin dynamics in ultracold quantum gases by microwave dressing

    Full text link
    We study experimentally interaction-driven spin oscillations in optical lattices in the presence of an off-resonant microwave field. We show that the energy shift induced by this microwave field can be used to control the spin oscillations by tuning the system either into resonance to achieve near-unity contrast or far away from resonance to suppress the oscillations. Finally, we propose a scheme based on this technique to create a flat sample with either singly- or doubly-occupied sites, starting from an inhomogeneous Mott insulator, where singly- and doubly-occupied sites coexist.Comment: 4 pages, 5 figure

    Direct probing of the Mott crossover in the SU(NN) Fermi-Hubbard model

    Get PDF
    The Fermi-Hubbard model (FHM) is a cornerstone of modern condensed matter theory. Developed for interacting electrons in solids, which typically exhibit SU(22) symmetry, it describes a wide range of phenomena, such as metal to insulator transitions and magnetic order. Its generalized SU(NN)-symmetric form, originally applied to multi-orbital materials such as transition-metal oxides, has recently attracted much interest owing to the availability of ultracold SU(NN)-symmetric atomic gases. Here we report on a detailed experimental investigation of the SU(NN)-symmetric FHM using local probing of an atomic gas of ytterbium in an optical lattice to determine the equation of state through different interaction regimes. We prepare a low-temperature SU(NN)-symmetric Mott insulator and characterize the Mott crossover, representing important steps towards probing predicted novel SU(NN)-magnetic phases

    Quantum Spin Dynamics of Mode-Squeezed Luttinger Liquids in Two-Component Atomic Gases

    Get PDF
    We report on the observation of the phase dynamics of interacting one-dimensional ultracold bosonic gases with two internal degrees of freedom. By controlling the non-linear atomic interactions close to a Feshbach resonance we are able to induce a phase diffusive many-body spin dynamics. We monitor this dynamical evolution by Ramsey interferometry, supplemented by a novel, many-body echo technique. We find that the time evolution of the system is well described by a Luttinger liquid initially prepared in a multimode squeezed state. Our approach allows us to probe the non-equilibrium evolution of one-dimensional many-body quantum systems.Comment: 4 pages, 3 figures Updated version, minor change

    Coherent collisional spin dynamics in optical lattices

    Full text link
    We report on the observation of coherent, purely collisionally driven spin dynamics of neutral atoms in an optical lattice. For high lattice depths, atom pairs confined to the same lattice site show weakly damped Rabi-type oscillations between two-particle Zeeman states of equal magnetization, induced by spin changing collisions. This paves the way towards the efficient creation of robust entangled atom pairs in an optical lattice. Moreover, measurement of the oscillation frequency allows for precise determination of the spin-changing collisional coupling strengths, which are directly related to fundamental scattering lengths describing interatomic collisions at ultracold temperatures.Comment: revised version; 4 pages, 5 figure

    Exploring the Kondo model in and out of equilibrium with alkaline-earth atoms

    Full text link
    We propose a scheme to realize the Kondo model with tunable anisotropy using alkaline-earth atoms in an optical lattice. The new feature of our setup is Floquet engineering of interactions using time-dependent Zeeman shifts, that can be realized either using state-dependent optical Stark shifts or magnetic fields. The properties of the resulting Kondo model strongly depend on the anisotropy of the ferromagnetic interactions. In particular, easy-plane couplings give rise to Kondo singlet formation even though microscopic interactions are all ferromagnetic. We discuss both equilibrium and dynamical properties of the system that can be measured with ultracold atoms, including the impurity spin susceptibility, the impurity spin relaxation rate, as well as the equilibrium and dynamical spin correlations between the impurity and the ferromagnetic bath atoms. We analyze the non-equilibrium time evolution of the system using a variational non-Gaussian approach, which allows us to explore coherent dynamics over both short and long timescales, as set by the bandwidth and the Kondo singlet formation, respectively. In the quench-type experiments, when the Kondo interaction is suddenly switched on, we find that real-time dynamics shows crossovers reminiscent of poor man's renormalization group flow used to describe equilibrium systems. For bare easy-plane ferromagnetic couplings, this allows us to follow the formation of the Kondo screening cloud as the dynamics crosses over from ferromagnetic to antiferromagnetic behavior. On the other side of the phase diagram, our scheme makes it possible to measure quantum corrections to the well-known Korringa law describing the temperature dependence of the impurity spin relaxation rate. Theoretical results discussed in our paper can be measured using currently available experimental techniques.Comment: 22 pages, 12 figure
    corecore