1,964,295 research outputs found

    Planar Harmonic Polynomials of Type B

    Full text link
    The hyperoctahedral group is the Weyl group of type B and is associated with a two-parameter family of differential-difference operators T_i, i=1,..,N (the dimension of the underlying Euclidean space). These operators are analogous to partial derivative operators. This paper finds all the polynomials in N variables which are annihilated by the sum of the squares (T_1)^2+(T_2)^2 and by all T_i for i>2 (harmonic). They are given explicitly in terms of a novel basis of polynomials, defined by generating functions. The harmonic polynomials can be used to find wave functions for the quantum many-body spin Calogero model.Comment: 17 pages, LaTe

    Elastic collapse in disordered isostatic networks

    Full text link
    Isostatic networks are minimally rigid and therefore have, generically, nonzero elastic moduli. Regular isostatic networks have finite moduli in the limit of large sizes. However, numerical simulations show that all elastic moduli of geometrically disordered isostatic networks go to zero with system size. This holds true for positional as well as for topological disorder. In most cases, elastic moduli decrease as inverse power-laws of system size. On directed isostatic networks, however, of which the square and cubic lattices are particular cases, the decrease of the moduli is exponential with size. For these, the observed elastic weakening can be quantitatively described in terms of the multiplicative growth of stresses with system size, giving rise to bulk and shear moduli of order exp{-bL}. The case of sphere packings, which only accept compressive contact forces, is considered separately. It is argued that these have a finite bulk modulus because of specific correlations in contact disorder, introduced by the constraint of compressivity. We discuss why their shear modulus, nevertheless, is again zero for large sizes. A quantitative model is proposed that describes the numerically measured shear modulus, both as a function of the loading angle and system size. In all cases, if a density p>0 of overconstraints is present, as when a packing is deformed by compression, or when a glass is outside its isostatic composition window, all asymptotic moduli become finite. For square networks with periodic boundary conditions, these are of order sqrt{p}. For directed networks, elastic moduli are of order exp{-c/p}, indicating the existence of an "isostatic length scale" of order 1/p.Comment: 6 pages, 6 figues, to appear in Europhysics Letter

    New conjecture for the SUq(N)SU_q(N) Perk-Schultz models

    Full text link
    We present a new conjecture for the SUq(N)SU_q(N) Perk-Schultz models. This conjecture extends a conjecture presented in our article (Alcaraz FC and Stroganov YuG (2002) J. Phys. A vol. 35 pg. 6767-6787, and also in cond-mat/0204074).Comment: 3 pages 0 figure

    Generalization of the matrix product ansatz for integrable chains

    Full text link
    We present a general formulation of the matrix product ansatz for exactly integrable chains on periodic lattices. This new formulation extends the matrix product ansatz present on our previous articles (F. C. Alcaraz and M. J. Lazo J. Phys. A: Math. Gen. 37 (2004) L1-L7 and J. Phys. A: Math. Gen. 37 (2004) 4149-4182.)Comment: 5 pages. to appear in J. Phys. A: Math. Ge

    The effect of concurrent geometry and roughness in interacting surfaces

    Get PDF
    We study the interaction energy between two surfaces, one of them flat, the other describable as the composition of a small-amplitude corrugation and a slightly curved, smooth surface. The corrugation, represented by a spatially random variable, involves Fourier wavelengths shorter than the (local) curvature radii of the smooth component of the surface. After averaging the interaction energy over the corrugation distribution, we obtain an expression which only depends on the smooth component. We then approximate that functional by means of a derivative expansion, calculating explicitly the leading and next-to-leading order terms in that approximation scheme. We analyze the resulting interplay between shape and roughness corrections for some specific corrugation models in the cases of electrostatic and Casimir interactions.Comment: 14 pages, 3 figure

    Vacuum fluctuations and generalized boundary conditions

    Get PDF
    We present a study of the static and dynamical Casimir effects for a quantum field theory satisfying generalized Robin boundary condition, of a kind that arises naturally within the context of quantum circuits. Since those conditions may also be relevant to measurements of the dynamical Casimir effect, we evaluate their role in the concrete example of a real scalar field in 1+1 dimensions, a system which has a well-known mechanical analogue involving a loaded string.Comment: 8 pages, 1 figur

    The derivative expansion approach to the interaction between close surfaces

    Get PDF
    The derivative expansion approach to the calculation of the interaction between two surfaces, is a generalization of the proximity force approximation, a technique of widespread use in different areas of physics. The derivative expansion has so far been applied to seemingly unrelated problems in different areas; it is our principal aim here to present the approach in its full generality. To that end, we introduce an unified setting, which is independent of any particular application, provide a formal derivation of the derivative expansion in that general setting, and study some its properties. With a view on the possible application of the derivative expansion to other areas, like nuclear and colloidal physics, we also discuss the relation between the derivative expansion and some time-honoured uncontrolled approximations used in those contexts. By putting them under similar terms as the derivative expansion, we believe that the path is open to the calculation of next to leading order corrections also for those contexts. We also review some results obtained within the derivative expansion, by applying it to different concrete examples and highlighting some important points.Comment: Minor changes, version to appear in Phys. Rev.

    Inertial forces and dissipation on accelerated boundaries

    Get PDF
    We study dissipative effects due to inertial forces acting on matter fields confined to accelerated boundaries in 1+11+1, 2+12+1, and 3+13+1 dimensions. These matter fields describe the internal degrees of freedom of `mirrors' and impose, on the surfaces where they are defined, boundary conditions on a fluctuating `vacuum' field. We construct different models, involving either scalar or Dirac matter fields coupled to a vacuum scalar field, and use effective action techniques to calculate the strength of dissipation. In the case of massless Dirac fields, the results could be used to describe the inertial forces on an accelerated graphene sheet.Comment: 7 pages, no figure
    • …
    corecore