7 research outputs found

    Surface effects in nanoparticles: application to maghemite γ\gamma-Fe_{2}O_{3}

    Full text link
    We present a microscopic model for nanoparticles, of the maghemite (γ\gamma % -Fe2_{2}O3_{3}) type, and perform classical Monte Carlo simulations of their magnetic properties. On account of M\"{o}ssbauer spectroscopy and high-field magnetisation results, we consider a particle as composed of a core and a surface shell of constant thickness. The magnetic state in the particle is described by the anisotropic classical Dirac-Heisenberg model including exchange and dipolar interactions and bulk and surface anisotropy. We consider the case of ellipsoidal (or spherical) particles with free boundaries at the surface. Using a surface shell of constant thickness (∼0.35\sim 0.35 nm) we vary the particle size and study the effect of surface magnetic disorder on the thermal and spatial behaviors of the net magnetisation of the particle. We study the shift in the surface ``critical region'' for different surface-to-core ratios of the exchange coupling constants. It is also shown that the profile of the local magnetisation exhibits strong temperature dependence, and that surface anisotropy is reponsible for the non saturation of the magnetisation at low temperatures.Comment: 15 pages, 7 figures, to appear in Eur. Phys. J.

    Field dependence of the temperature at the peak of the ZFC magnetization

    Full text link
    The effect of an applied magnetic field on the temperature at the maximum of the ZFC magnetization, MZFCM_{ZFC}, is studied using the recently obtained analytic results of Coffey et al. (Phys. Rev. Lett. {\bf 80}(1998) 5655) for the prefactor of the N\'{e}el relaxation time which allow one to precisely calculate the prefactor in the N\'{e}el-Brown model and thus the blocking temperature as a function of the coefficients of the Taylor series expansion of the magnetocrystalline anisotropy. The present calculations indicate that even a precise determination of the prefactor in the N\'{e}el-Brown theory, which always predicts a monotonic decrease of the relaxation time with increasing field, is insufficient to explain the effect of an applied magnetic field on the temperature at the maximum of the ZFC magnetization. On the other hand, we find that the non linear field-dependence of the magnetization along with the magnetocrystalline anisotropy appears to be of crucial importance to the existence of this maximum.Comment: 14 LaTex209 pages, 6 EPS figures. To appear in J. Phys.: Condensed Matte

    Recycling Thermoset Epoxy Resin Using Alkyl-Methyl-Imidazolium Ionic Liquids as Green Solvents

    No full text
    Herein, a solvent-based green recycling procedure is reported for recycling thermoset epoxy resins (TERs) and carbon fiber reinforced epoxy composites (CFRECs) employing ionic liquids (ILs) and alcohols under mild conditions. With melting points less than 100 °C, ILs are defined as organic salts, typically composed of bulky cations with organic or inorganic counteranions. As a result of their unique physical properties such as low vapor pressure, relatively high thermal stability, and multifunctional tunability, these solvents are often classified as green solvents as compared to traditional organic solvents. In this study, swelling and dissolution of TER are evaluated in the presence of pure alkyl-methyl-imidazolium ILs, alcohols, and various mixtures of these co-solvents to determine their swelling and depolymerization capacity at mild temperatures in the absence of catalysts. In these studies, three ILs with different alkyl lengths were evaluated: 1-butyl-3-methyl imidazolium chloride ([BMIm][Cl]), 1-hexyl-3-methyl imidazolium bromide ([HMIm][Br]), and 1-octyl-3-methyl imidazolium bromide ([OMIm][Br]) along with two alcohols: ethylene glycol (EG) and glycerol (Gly). The highest swelling capacity of TER at 150 °C was achieved by a combination of [BMIm][Cl] and EG. In addition, swelling and dissolution of TER were evaluated in the presence of several anion variants of 1-butyl-3-methyl-imidazolium ILs with EG. Complete dissolution of both TERs and CFRECs was achieved in 150 min (2.5 h) at 150 °C under atmospheric pressure. Finally, recovery and reuse of the recycled monomer after dissolution were examined. Recovered epoxy monomers employed to synthesize a recycled TER exhibited similar mechanical properties to the parent TER. In addition, it was demonstrated that carbon fibers could be successfully recovered from CFREC using the recycling method detailed in this manuscript

    Static and Dynamical Properties of γ-Fe2O3 Nanoparticles

    No full text
    Several series of γ-Fe2O3 nanoparticles dispersed in a polymer have been studied by means of various techniques. The variation of the relaxation time of the magnetic moment of the particle is in very good agreement with the Néel-Brown and our interparticle interaction models which lead to a reduced damping constant varying between 0.08 and 1. For non interacting particles, the main component of the anisotropy comes from the surface. For interacting particles, the interaction energy includes dipolar and surface induced contributions. The susceptibility in the superparamagnetic state shows a strong dependence of the results on the external shape of the sample and the direction of applied field, very well checked experimentally, which is well interpreted with the Onsager model
    corecore