223 research outputs found

    Delayed Toxicity Associated with Soluble Anthrax Toxin Receptor Decoy-Ig Fusion Protein Treatment

    Get PDF
    Soluble receptor decoy inhibitors, including receptor-immunogloubulin (Ig) fusion proteins, have shown promise as candidate anthrax toxin therapeutics. These agents act by binding to the receptor-interaction site on the protective antigen (PA) toxin subunit, thereby blocking toxin binding to cell surface receptors. Here we have made the surprising observation that co-administration of receptor decoy-Ig fusion proteins significantly delayed, but did not protect, rats challenged with anthrax lethal toxin. The delayed toxicity was associated with the in vivo assembly of a long-lived complex comprised of anthrax lethal toxin and the receptor decoy-Ig inhibitor. Intoxication in this system presumably results from the slow dissociation of the toxin complex from the inhibitor following their prolonged circulation. We conclude that while receptor decoy-Ig proteins represent promising candidates for the early treatment of B. anthracis infection, they may not be suitable for therapeutic use at later stages when fatal levels of toxin have already accumulated in the bloodstream

    Anthrax Toxin Receptor Drives Protective Antigen Oligomerization and Stabilizes the Heptameric and Octameric Oligomer by a Similar Mechanism

    Get PDF
    Anthrax toxin is comprised of protective antigen (PA), lethal factor (LF), and edema factor (EF). These proteins are individually nontoxic; however, when PA assembles with LF and EF, it produces lethal toxin and edema toxin, respectively. Assembly occurs either on cell surfaces or in plasma. In each milieu, PA assembles into a mixture of heptameric and octameric complexes that bind LF and EF. While octameric PA is the predominant form identified in plasma under physiological conditions (pH 7.4, 37Β°C), heptameric PA is more prevalent on cell surfaces. The difference between these two environments is that the anthrax toxin receptor (ANTXR) binds to PA on cell surfaces. It is known that the extracellular ANTXR domain serves to stabilize toxin complexes containing the PA heptamer by preventing premature PA channel formation--a process that inactivates the toxin. The role of ANTXR in PA oligomerization and in the stabilization of toxin complexes containing octameric PA are not understood.Using a fluorescence assembly assay, we show that the extracellular ANTXR domain drives PA oligomerization. Moreover, a dimeric ANTXR construct increases the extent of and accelerates the rate of PA assembly relative to a monomeric ANTXR construct. Mass spectrometry analysis shows that heptameric and octameric PA oligomers bind a full stoichiometric complement of ANTXR domains. Electron microscopy and circular dichroism studies reveal that the two different PA oligomers are equally stabilized by ANTXR interactions.We propose that PA oligomerization is driven by dimeric ANTXR complexes on cell surfaces. Through their interaction with the ANTXR, toxin complexes containing heptameric and octameric PA oligomers are similarly stabilized. Considering both the relative instability of the PA heptamer and extracellular assembly pathway identified in plasma, we propose a means to regulate the development of toxin gradients around sites of infection during anthrax pathogenesis

    Cationic polyamines inhibit anthrax lethal factor protease

    Get PDF
    BACKGROUND: Anthrax is a human disease that results from infection by the bacteria, Bacillus anthracis and has recently been used as a bioterrorist agent. Historically, this disease was associated with Bacillus spore exposure from wool or animal carcasses. While current vaccine approaches (targeted against the protective antigen) are effective for prophylaxis, multiple doses must be injected. Common antibiotics that block the germination process are effective but must be administered early in the infection cycle. In addition, new therapeutics are needed to specifically target the proteolytic activity of lethal factor (LF) associated with this bacterial infection. RESULTS: Using a fluorescence-based assay to identify and characterize inhibitors of anthrax lethal factor protease activity, we identified several chemically-distinct classes of inhibitory molecules including polyamines, aminoglycosides and cationic peptides. In these studies, spermine was demonstrated for the first time to inhibit anthrax LF with a K(i )value of 0.9 Β± 0.09 ΞΌM (mean Β± SEM; n = 3). Additional linear polyamines were also active as LF inhibitors with lower potencies. CONCLUSION: Based upon the studies reported herein, we chose linear polyamines related to spermine as potential lead optimization candidates and additional testing in cell-based models where cell penetration could be studied. During our screening process, we reproducibly demonstrated that the potencies of certain compounds, including neomycin but not neamine or spermine, were different depending upon the presence or absence of nucleic acids. Differential sensitivity to the presence/absence of nucleic acids may be an additional point to consider when comparing various classes of active compounds for lead optimization

    Anthrax Lethal Toxin Suppresses Murine Cardiomyocyte Contractile Function and Intracellular Ca2+ Handling via a NADPH Oxidase-Dependent Mechanism

    Get PDF
    OBJECTIVES: Anthrax infection is associated with devastating cardiovascular sequelae, suggesting unfavorable cardiovascular effects of toxins originated from Bacillus anthracis namely lethal and edema toxins. This study was designed to examine the direct effect of lethal toxins on cardiomyocyte contractile and intracellular Ca(2+) properties. METHODS: Murine cardiomyocyte contractile function and intracellular Ca(2+) handling were evaluated including peak shortening (PS), maximal velocity of shortening/ relengthening (Β± dL/dt), time-to-PS (TPS), time-to-90% relengthening (TR(90)), intracellular Ca(2+) rise measured as fura-2 fluorescent intensity (Ξ”FFI), and intracellular Ca(2+) decay rate. Stress signaling and Ca(2+) regulatory proteins were assessed using Western blot analysis. RESULTS: In vitro exposure to a lethal toxin (0.05-50 nM) elicited a concentration-dependent depression on cardiomyocyte contractile and intracellular Ca(2+) properties (PS, Β± dL/dt, Ξ”FFI), along with prolonged duration of contraction and intracellular Ca(2+) decay, the effects of which were nullified by the NADPH oxidase inhibitor apocynin. The lethal toxin significantly enhanced superoxide production and cell death, which were reversed by apocynin. In vivo lethal toxin exposure exerted similar time-dependent cardiomyocyte mechanical and intracellular Ca(2+) responses. Stress signaling cascades including MEK1/2, p38, ERK and JNK were unaffected by in vitro lethal toxins whereas they were significantly altered by in vivo lethal toxins. Ca(2+) regulatory proteins SERCA2a and phospholamban were also differentially regulated by in vitro and in vivo lethal toxins. Autophagy was drastically triggered although ER stress was minimally affected following lethal toxin exposure. CONCLUSIONS: Our findings indicate that lethal toxins directly compromised murine cardiomyocyte contractile function and intracellular Ca(2+) through a NADPH oxidase-dependent mechanism

    Anthrax Toxin Receptor 2 Determinants that Dictate the pH Threshold of Toxin Pore Formation

    Get PDF
    The anthrax toxin receptors, ANTXR1 and ANTXR2, act as molecular clamps to prevent the protective antigen (PA) toxin subunit from forming pores until exposure to low pH. PA forms pores at pH ∼6.0 or below when it is bound to ANTXR1, but only at pH ∼5.0 or below when it is bound to ANTXR2. Here, structure-based mutagenesis was used to identify non-conserved ANTXR2 residues responsible for this striking 1.0 pH unit difference in pH threshold. Residues conserved between ANTXR2 and ANTXR1 that influence the ANTXR2-associated pH threshold of pore formation were also identified. All of these residues contact either PA domain 2 or the neighboring edge of PA domain 4. These results provide genetic evidence for receptor release of these regions of PA as being necessary for the protein rearrangements that accompany anthrax toxin pore formation

    Anthrax Toxins Induce Shock in Rats by Depressed Cardiac Ventricular Function

    Get PDF
    Anthrax infections are frequently associated with severe and often irreversible hypotensive shock. The isolated toxic proteins of Bacillus anthracis produce a non-cytokine-mediated hypotension in rats by unknown mechanisms. These observations suggest the anthrax toxins have direct cardiovascular effects. Here, we characterize these effects. As a first step, we administered systemically anthrax lethal toxin (LeTx) and edema toxin (EdTx) to cohorts of three to twelve rats at different doses and determined the time of onset, degree of hypotension and mortality. We measured serum concentrations of the protective antigen (PA) toxin component at various time points after infusion. Peak serum levels of PA were in the Β΅g/mL range with half-lives of 10–20 minutes. With doses that produced hypotension with delayed lethality, we then gave bolus intravenous infusions of toxins to groups of four to six instrumented rats and continuously monitored blood pressure by telemetry. Finally, the same doses used in the telemetry experiments were given to additional groups of four rats, and echocardiography was performed pretreatment and one, two, three and twenty-four hours post-treatment. LeTx and EdTx each produced hypotension. We observed a doubling of the velocity of propagation and 20% increases in left ventricular diastolic and systolic areas in LeTx-treated rats, but not in EdTx-treated rats. EdTx-but not LeTx-treated rats showed a significant increase in heart rate. These results indicate that LeTx reduced left ventricular systolic function and EdTx reduced preload. Uptake of toxins occurs readily into tissues with biological effects occurring within minutes to hours of serum toxin concentrations in the Β΅g/mL range. LeTx and EdTx yield an irreversible shock with subsequent death. These findings should provide a basis for the rational design of drug interventions to reduce the dismal prognosis of systemic anthrax infections

    p53 Target Gene SMAR1 Is Dysregulated in Breast Cancer: Its Role in Cancer Cell Migration and Invasion

    Get PDF
    Tumor suppressor SMAR1 interacts and stabilizes p53 through phosphorylation at its serine-15 residue. We show that SMAR1 transcription is regulated by p53 through its response element present in the SMAR1 promoter. Upon Doxorubicin induced DNA damage, acetylated p53 is recruited on SMAR1 promoter that allows activation of its transcription. Once SMAR1 is induced, cell cycle arrest is observed that is correlated to increased phospho-ser-15-p53 and decreased p53 acetylation. Further we demonstrate that SMAR1 expression is drastically reduced during advancement of human breast cancer. This was correlated with defective p53 expression in breast cancer where acetylated p53 is sequestered into the heterochromatin region and become inaccessible to activate SMAR1 promoter. In a recent report we have shown that SMAR1 represses Cyclin D1 transcription through recruitment of HDAC1 dependent repressor complex at the MAR site of Cyclin D1 promoter. Here we show that downmodulation of SMAR1 in high grade breast carcinoma is correlated with upregulated Cyclin D1 expression. We also established that SMAR1 inhibits tumor cell migration and metastases through inhibition of TGFΞ² signaling and its downstream target genes including cutl1 and various focal adhesion molecules. Thus, we report that SMAR1 plays a central role in coordinating p53 and TGFΞ² pathways in human breast cancer

    Role of N-Terminal Amino Acids in the Potency of Anthrax Lethal Factor

    Get PDF
    Anthrax lethal factor (LF) is a Zn+2-dependent metalloprotease that cleaves several MAPK kinases and is responsible for the lethality of anthrax lethal toxin (LT). We observed that a recombinant LF (LF-HMA) which differs from wild type LF (LF-A) by the addition of two residues (His-Met) to the native Ala (A) terminus as a result of cloning manipulations has 3-fold lower potency toward cultured cells and experimental animals. We hypothesized that the β€œN-end rule”, which relates the half-life of proteins in cells to the identity of their N-terminal residue, might be operative in the case of LF, so that the N-terminal residue of LF would determine the cytosolic stability and thereby the potency of LF. Mutational studies that replaced the native N-terminal residue of LF with known N-end rule stabilizing or destabilizing residues confirmed that the N-terminal residue plays a significant role in determining the potency of LT for cultured cells and experimental animals. The fact that a commercially-available LF preparation (LF-HMA) that is widely used in basic research studies and for evaluation of vaccines and therapeutics is 3-fold less potent than native LF (LF-A) should be considered when comparing published studies and in the design of future experiments
    • …
    corecore