5 research outputs found

    Mitigating the Impacts of the COVID-19 Pandemic on Crop Farming: A Nanotechnological Approach

    No full text
    COVID-19 is a highly infectious respiratory disease that resulted in a global pandemic that has affected every stage and sector of life. Although it is mainly seen as a health issue, its impacts and ripple effects also resonated in the education, technology, agriculture, and research fields, creating socio-economic disruptions across the globe. In a bid to curb the wide spread of the disease, diverse sudden restriction measures were adopted, which had implications on food security and food availability via supply shortages and agricultural disruptions. Scientific studies such as those regarding nanotechnological developments, which had been underway for improving food quality and crop improvement, were also slowed down due to the complexities of the pandemic and global restrictions. Nanotechnology is a developing and promising field for further development of crop productivity by enhancing the proficiency of agricultural resources, thereby increasing food yield and food security. The application of nanotechnology crop farming involves the use of nano-scale materials that can be formulated into nano-emulsion, nano-capsule, nano-fertilizer, nano-pesticide, and nano-biosensor applications for improved agricultural productivity. In as much as the challenges of nanotoxicity could raise health and environmental concerns, advances in the biosynthesis of nanomaterials potentially allay such fears and concerns. Furthermore, these ideas will help in bridging the gap created by the pandemic on food availability, food security, and agriculture. This review focuses on the implications of the COVID-19 pandemic on nanotechnological applications for improved crop productivity and nanotechnological mitigation strategies on the impacts of the COVID-19 pandemic, risk assessment, and regulatory issues surrounding nano-crop farming, and this study provides an insight into future research directions for nanotechnological improvements in crop farming and the sustainable development of nano-enabled agriculture

    Investigation of the site-specific binding interactions and sensitivity of ochratoxin with aluminum nitride (Al12N12) nanoclusters. An intuition from Quantum Chemical Calculations

    No full text
    Density functional theory (DFT) computing was used in this study to examine the feasibility for detecting the interaction of nitrogen ([email protected]), oxygen ([email protected]), and chlorine ([email protected]) with the surface of an aluminum nitride (Al12N12) nanocluster. The DFT/PBE0-D3/aug-cc-pVDZ approach was heavily utilised in the computations of the quantum electronic structural characteristics, interaction energies, and sensing parameters. Fascinatingly, the results showed that [email protected], with a value of 2.04 eV, possessed a higher energy gap, making it the most stable among the spatial orientations. Meanwhile, [email protected] had the lowest energy gap of 1.55 eV, making it the least stable and more reactive compound. More so, the natural bond analysis (NBO) analysis indicated that [email protected] has the highest energy of perturbation among adsorption atoms. However, a decrement was observed in the energy value for [email protected], [email protected], and [email protected] with energy values of 1.55, 1.82, and 2.04 eV, respectively, compared to the energy gap value of 2.37 eV of the Al12N12 nanocluster. Also, the adsorption study showed that [email protected] interaction had the greatest negative adsorption energy of -2.466 eV and thus, possesses the fastest recovery time of 3.3E-158 s. The recovery time for [email protected] was 1.6E-156 s, and the least responsive was [email protected] with a recovery time of 1.94E-86. [email protected] indicated the fastest response with a time of 1.616 s, followed by 1.757 s for [email protected], and the least responsive was [email protected] with 1.881 s. Thus, it can be inferred that [email protected] is the most preferred spatial orientation and interaction site of ochratoxin upon interaction with the AlN surface due to its high adsorption energy, stability, perturbation energy, and recovery time. Using the aforementioned method, this study provides valuable insights into the interactions of Ochra with the AlN surface and its potential as a sensing material

    Adsorption mechanism of AsH3 pollutant on metal-functionalized coronene C24H12-X (X = Mg, Al, K) quantum dots

    No full text
    Inorganic arsenic compounds are frequently found to occur naturally or as a result of mining in soils, sediments, and groundwater. Organic arsenic exists mainly in fish, shellfish, and other aquatic life and as a result of this, it may be contaminated in edible consumables such as rice and poorly purified drinking water. Exposure to this toxic gas can cause severe lung and skin cancer as well as other related cancer cases. Therefore, the need to develop more efficient sensing/monitoring devices to signal or detect the presence of excessive accumulation of this gas in our atmosphere is highly demanding. This study has effectively employed quantum mechanical approach, utilizing density functional theory (DFT) to investigate the nanosensing efficacy of metal-decorated coronene quantum dot (QD); (CadecQD, AldecQD, KdecQD, and MgdecQD) surface towards the efficient trapping of AsH3 gas molecule in an attempt to effectively detect the presence of the gas molecule which would help in reducing the health risk imposed by the AsH3. The result obtained from the electronic studies reveals that the engineered molecules interacted more favorably at the gas and water phase than other solvents, owing to their varying calculated adsorption energies (Eads). It was observed that the decoration of potassium and aluminum into the QD surface enhanced the adsorption process of AsH3 gas onto KdecQD and AldecQD surfaces with a comparably moderate level of stability exhibited by the said systems, which is evidently shown by the excellent energy gap (Eg) of 6.9599 eV and 7.3313 eV respectively for the aforementioned surfaces

    Radioactivity distributions and biohazard assessment of coastal marine environments of niger-delta, Nigeria

    Get PDF
    ABSTRACTThe Unumherin community in Nigeria’s Niger Delta is home to coastal marine polluted zones, and this research examines the radioactivity distributions and biohazard in the coastal environment. The activity concentrations of 40K, 238U, 232Th, as well as the outdoor dose rate of contaminated coastlines were measured using a calibrated RS-125 Gamma-Spec and a NaI(Tl) gamma-detector. The laboratory examination of sediments, water, and fish from the same coastal region – Clarias gariepinus Pseudotropheus elongated Oreochromis niloticus and Stromateus fiatola – was combined with the in-situ observations of gamma dose rates. With a value of [Formula: see text], the hotspot at site 4 is shown by the geographic distribution of gamma dose rates. The findings showed that the activities of the primordial radionuclides varied, with average values for the sediments and water exceeding suggested limits. Similarly, the corresponding mean hazard indices mostly exceeds the allowable limits. The species specificity of the fish species accounts for the variation in the mean concentrations of 40K, 238U and 232Th. C. gariepinus, having accumulated higher concentrations of 40K and 238U, may be the first to elicit health hazards in the future if pollution continues unmonitored. Hence, continuous monitoring of the aquatic environment alongside is highly recommended

    Anti-inflammatory biomolecular activity of chlorinated-phenyldiazenyl-naphthalene-2-sulfonic acid derivatives: perception from DFT, molecular docking, and molecular dynamic simulation

    No full text
    In this study, two novel derivatives of naphthalene-2-sulfonic acid: 6-(((1S,5R)-3,5-dichloro-2,4,6-triazabicyclo [z3.1.0]hex-3-en-1-yl)amino)-5-((E)-phenyldiazenyl)naphthalene-2-sulfonic acid (DTPS1) and (E)-6-((4,6-dichloro-1,3,5-triazine2-yl)amino)-4-hydroxy-3-(phenyldiazenyl)naphthalene-2-sulfonic acid (DTPS2) have been synthesized and characterized using FT-IR, UV-vis, and NMR spectroscopic techniques. Applying density functional theory (DFT) at the B3LYP, APFD, PBEPBE, HCTH, TPSSTPSS, and ωB97XD/aug-cc-pVDZ level of theories for the electronic structural properties. In-vitro analysis, molecular docking, molecular dynamic (MD) simulation of the compounds was conducted to investigate the anti-inflammatory potential using COXs enzymes. Docking indicates binding affinity of −9.57, −9.60, −6.77 and −7.37 kcal/mol for DTPS1, DTPS2, Ibuprofen and Diclofenac which agrees with in-vitro assay. Results of MD simulation, indicates sulphonic group in DTPS1 has > 30% interaction with the hydroxyl and oxygen atoms in amino acid residues, but > 35% interaction with the DTPS2. It can be said that the DTPS1 and DTPS2 can induce inhibitory effect on COXs to halt biosynthesis of prostaglandins (PGs), a chief mediator of inflammation and pain in mammals. Communicated by Ramaswamy H. Sarma</p
    corecore