825 research outputs found
Full Quantum Analysis of Two-Photon Absorption Using Two-Photon Wavefunction: Comparison with One-Photon Absorption
For dissipation-free photon-photon interaction at the single photon level, we
analyze one-photon transition and two-photon transition induced by photon pairs
in three-level atoms using two-photon wavefunctions. We show that the
two-photon absorption can be substantially enhanced by adjusting the time
correlation of photon pairs. We study two typical cases: Gaussian wavefunction
and rectangular wavefunction. In the latter, we find that under special
conditions one-photon transition is completely suppressed while the high
probability of two-photon transition is maintained.Comment: 6 pages, 4 figure
Coulomb correlation effects in semiconductor quantum dots: The role of dimensionality
We study the energy spectra of small three-dimensional (3D) and
two-dimensional (2D) semiconductor quantum dots through different theoretical
approaches (single-site Hubbard and Hartree-Fock hamiltonians); in the smallest
dots we also compare with exact results. We find that purely 2D models often
lead to an inadequate description of the Coulomb interaction existing in
realistic structures, as a consequence of the overestimated carrier
localization. We show that the dimensionality of the dots has a crucial impact
on (i) the accuracy of the predicted addition spectra; (ii) the range of
validity of approximate theoretical schemes. When applied to realistic 3D
geometries, the latter are found to be much more accurate than in the
corresponding 2D cases for a large class of quantum dots; the single-site
Hubbard hamiltonian is shown to provide a very effective and accurate scheme to
describe quantum dot spectra, leading to good agreement with experiments.Comment: LaTeX 2.09, RevTeX, 25 pages, 9 Encapsulated Postscript figures. To
be published in Physical Review
Excitonic Strings in one dimensional organic compounds
Important questions concern the existence of excitonic strings in organic
compounds and their signatures in the photophysics of these systems. A model in
terms of Hard Core Bosons is proposed to study this problem in one dimension.
Mainly the cases with two and three particles are studied for finite and
infinite lattices, where analytical results are accessible. It is shown that if
bi-excitonic states exist, three-excitonic and even, n-excitonic strings, at
least in a certain range of parameters, will exist. Moreover, the behaviour of
the transitions from one exciton to the biexciton is fully clarified. The
results are in agreement with exact finite cluster diagonalizations of several
model Hamiltonians.Comment: 36 pages, 4 eps figs. to appear in Phys. Rev.
Supramolecular interactions in clusters of polar and polarizable molecules
We present a model for molecular materials made up of polar and polarizable
molecular units. A simple two state model is adopted for each molecular site
and only classical intermolecular interactions are accounted for, neglecting
any intermolecular overlap. The complex and interesting physics driven by
interactions among polar and polarizable molecules becomes fairly transparent
in the adopted model. Collective effects are recognized in the large variation
of the molecular polarity with supramolecular interactions, and cooperative
behavior shows up with the appearance, in attractive lattices, of discontinuous
charge crossovers. The mean-field approximation proves fairly accurate in the
description of the gs properties of MM, including static linear and non-linear
optical susceptibilities, apart from the region in the close proximity of the
discontinuous charge crossover. Sizeable deviations from the excitonic
description are recognized both in the excitation spectrum and in linear and
non-linear optical responses. New and interesting phenomena are recognized near
the discontinuous charge crossover for non-centrosymmetric clusters, where the
primary photoexcitation event corresponds to a multielectron transfer.Comment: 14 pages, including 11 figure
Exact eigenspectrum of the symmetric simple exclusion process on the complete, complete bipartite, and related graphs
We show that the infinitesimal generator of the symmetric simple exclusion
process, recast as a quantum spin-1/2 ferromagnetic Heisenberg model, can be
solved by elementary techniques on the complete, complete bipartite, and
related multipartite graphs. Some of the resulting infinitesimal generators are
formally identical to homogeneous as well as mixed higher spins models. The
degeneracies of the eigenspectra are described in detail, and the
Clebsch-Gordan machinery needed to deal with arbitrary spin-s representations
of the SU(2) is briefly developed. We mention in passing how our results fit
within the related questions of a ferromagnetic ordering of energy levels and a
conjecture according to which the spectral gaps of the random walk and the
interchange process on finite simple graphs must be equal.Comment: Final version as published, 19 pages, 4 figures, 40 references given
in full forma
Rotational and vibrational spectra of quantum rings
One can confine the two-dimensional electron gas in semiconductor
heterostructures electrostatically or by etching techniques such that a small
electron island is formed. These man-made ``artificial atoms'' provide the
experimental realization of a text-book example of many-particle physics: a
finite number of quantum particles in a trap. Much effort was spent on making
such "quantum dots" smaller and going from the mesoscopic to the quantum
regime. Far-reaching analogies to the physics of atoms, nuclei or metal
clusters were obvious from the very beginning: The concepts of shell structure
and Hund's rules were found to apply -- just as in real atoms! In this Letter,
we report the discovery that electrons confined in ring-shaped quantum dots
form rather rigid molecules with antiferromagnetic order in the ground state.
This can be seen best from an analysis of the rotational and vibrational
excitations
Quantum-dot lithium in zero magnetic field: Electronic properties, thermodynamics, and a liquid-solid transition in the ground state
Energy spectra, electron densities, pair correlation functions and heat
capacity of a quantum-dot lithium in zero external magnetic field (a system of
three interacting two-dimensional electrons in a parabolic confinement
potential) are studied using the exact diagonalization approach. A particular
attention is given to a Fermi-liquid -- Wigner-solid transition in the ground
state of the dot, induced by the intra-dot Coulomb interaction.Comment: 12 pages, incl. 16 figure
Diffusion Monte Carlo study of circular quantum dots
We present ground and excited state energies obtained from Diffusion Monte
Carlo (DMC) calculations, using accurate multiconfiguration wave functions, for
electrons () confined to a circular quantum dot. We analyze the
electron-electron pair correlation functions and compare the density and
correlation energies to the predictions of local spin density approximation
theory (LSDA). The DMC estimated change in electrochemical potential as
function of the number of electrons in the dot is compared to that from LSDA
and Hartree-Fock (HF) calculations.Comment: 7 pages, 4 eps figures. To be published in Phys. Rev. B, September
15th 2000. See erratum cond-mat/030571
- …