9 research outputs found
A Comparison of Cooling Techniques to Treat Cardiac Arrest Patients with Hypothermia
Introduction. We sought to compare the performance of endovascular cooling to conventional surface cooling after cardiac arrest. Methods. Patients in coma following cardiopulmonary resuscitation were cooled with an endovascular cooling catheter or with ice bags and cold-water-circulating cooling blankets to a target temperature of 32.0–34.0°C for 24 hours. Performance of cooling techniques was compared by (1) number of hourly recordings in target temperature range, (2) time elapsed from the written order to initiate cooling and target temperature, and (3) adverse events during the first week. Results. Median time in target temperature range was 19 hours (interquartile range (IQR), 16–20) in the endovascular group versus. 10 hours (IQR, 7–15) in the surface group (P = .001). Median time to target temperature was 4 (IQR, 2.8–6.2) and 4.5 (IQR, 3–6.5) hours, respectively (P = .67). Adverse events were similar. Conclusion. Endovascular cooling maintains target temperatures better than conventional surface cooling
Recommended from our members
Contralateral Hemispheric Cerebral Blood Flow Measured With Arterial Spin Labeling Can Predict Outcome in Acute Stroke.
Background and Purpose- Imaging is frequently used to select acute stroke patients for intra-arterial therapy. Quantitative cerebral blood flow can be measured noninvasively with arterial spin labeling magnetic resonance imaging. Cerebral blood flow levels in the contralateral (unaffected) hemisphere may affect capacity for collateral flow and patient outcome. The goal of this study was to determine whether higher contralateral cerebral blood flow (cCBF) in acute stroke identifies patients with better 90-day functional outcome. Methods- Patients were part of the prospective, multicenter iCAS study (Imaging Collaterals in Acute Stroke) between 2013 and 2017. Consecutive patients were enrolled after being diagnosed with anterior circulation acute ischemic stroke. Inclusion criteria were ischemic anterior circulation stroke, baseline National Institutes of Health Stroke Scale score ≥1, prestroke modified Rankin Scale score ≤2, onset-to-imaging time <24 hours, with imaging including diffusion-weighted imaging and arterial spin labeling. Patients were dichotomized into high and low cCBF groups based on median cCBF. Outcomes were assessed by day-1 and day-5 National Institutes of Health Stroke Scale; and day-30 and day-90 modified Rankin Scale. Multivariable logistic regression was used to test whether cCBF predicted good neurological outcome (modified Rankin Scale score, 0-2) at 90 days. Results- Seventy-seven patients (41 women) met the inclusion criteria with median (interquartile range) age of 66 (55-76) yrs, onset-to-imaging time of 4.8 (3.6-7.7) hours, and baseline National Institutes of Health Stroke Scale score of 13 (9-20). Median cCBF was 38.9 (31.2-44.5) mL per 100 g/min. Higher cCBF predicted good outcome at day 90 (odds ratio, 4.6 [95% CI, 1.4-14.7]; P=0.01), after controlling for baseline National Institutes of Health Stroke Scale, diffusion-weighted imaging lesion volume, and intra-arterial therapy. Conclusions- Higher quantitative cCBF at baseline is a significant predictor of good neurological outcome at day 90. cCBF levels may inform decisions regarding stroke triage, treatment of acute stroke, and general outcome prognosis. Clinical Trial Registration- URL: https://www.clinicaltrials.gov. Unique identifier: NCT02225730
Prognostic Value of A Qualitative Brain MRI Scoring System After Cardiac Arrest
BACKGROUND AND PURPOSETo develop a qualitative brain magnetic resonance imaging (MRI) scoring system for comatose cardiac arrest patients that can be used in clinical practice. METHODSConsecutive comatose postcardiac arrest patients were prospectively enrolled. Routine MR brain sequences were scored by two independent blinded experts. Predefined brain regions were qualitatively scored on the fluid-attenuated inversion recovery (FLAIR) and diffusion-weighted imaging (DWI) sequences according to the severity of the abnormality on a scale from 0 to 4. The mean score of the raters was used. Poor outcome was defined as death or vegetative state at 6 months. RESULTSSixty-eight patients with 88 brain MRI scans were included. Median time from the arrest to the initial MRI was 77 hours (IQR 58-144 hours). At 100% specificity, the cortex score performed best in predicting unfavorable outcome with a sensitivity of 55%-60% (95% CI 41-74) depending on time window selection. When comparing the cortex score with historically used predictors for poor outcome, MRI improved the sensitivity for poor outcome over conventional predictors by 27% at 100% specificity. CONCLUSIONSA qualitative MRI scoring system helps assess hypoxic-ischemic brain injury severity following cardiac arrest and may provide useful prognostic information in comatose cardiac arrest patient
Magnetic Resonance Imaging Profile of Blood–Brain Barrier Injury in Patients With Acute Intracerebral Hemorrhage
BACKGROUND: Spontaneous intracerebral hemorrhage (ICH) is associated with blood–brain barrier (BBB) injury, which is a poorly understood factor in ICH pathogenesis, potentially contributing to edema formation and perihematomal tissue injury. We aimed to assess and quantify BBB permeability following human spontaneous ICH using dynamic contrast‐enhanced magnetic resonance imaging (DCE MRI). We also investigated whether hematoma size or location affected the amount of BBB leakage. METHODS AND RESULTS: Twenty‐five prospectively enrolled patients from the Diagnostic Accuracy of MRI in Spontaneous intracerebral Hemorrhage (DASH) study were examined using DCE MRI at 1 week after symptom onset. Contrast agent dynamics in the brain tissue and general tracer kinetic modeling were used to estimate the forward leakage rate (K(trans)) in regions of interest (ROI) in and surrounding the hematoma and in contralateral mirror–image locations (control ROI). In all patients BBB permeability was significantly increased in the brain tissue immediately adjacent to the hematoma, that is, the hematoma rim, compared to the contralateral mirror ROI (P<0.0001). Large hematomas (>30 mL) had higher K(trans) values than small hematomas (P<0.005). K(trans) values of lobar hemorrhages were significantly higher than the K(trans) values of deep hemorrhages (P<0.005), independent of hematoma volume. Higher K(trans) values were associated with larger edema volumes. CONCLUSIONS: BBB leakage in the brain tissue immediately bordering the hematoma can be measured and quantified by DCE MRI in human ICH. BBB leakage at 1 week is greater in larger hematomas as well as in hematomas in lobar locations and is associated with larger edema volumes
Recommended from our members
Contralateral Hemispheric Cerebral Blood Flow Measured With Arterial Spin Labeling Can Predict Outcome in Acute Stroke.
Background and Purpose- Imaging is frequently used to select acute stroke patients for intra-arterial therapy. Quantitative cerebral blood flow can be measured noninvasively with arterial spin labeling magnetic resonance imaging. Cerebral blood flow levels in the contralateral (unaffected) hemisphere may affect capacity for collateral flow and patient outcome. The goal of this study was to determine whether higher contralateral cerebral blood flow (cCBF) in acute stroke identifies patients with better 90-day functional outcome. Methods- Patients were part of the prospective, multicenter iCAS study (Imaging Collaterals in Acute Stroke) between 2013 and 2017. Consecutive patients were enrolled after being diagnosed with anterior circulation acute ischemic stroke. Inclusion criteria were ischemic anterior circulation stroke, baseline National Institutes of Health Stroke Scale score ≥1, prestroke modified Rankin Scale score ≤2, onset-to-imaging time <24 hours, with imaging including diffusion-weighted imaging and arterial spin labeling. Patients were dichotomized into high and low cCBF groups based on median cCBF. Outcomes were assessed by day-1 and day-5 National Institutes of Health Stroke Scale; and day-30 and day-90 modified Rankin Scale. Multivariable logistic regression was used to test whether cCBF predicted good neurological outcome (modified Rankin Scale score, 0-2) at 90 days. Results- Seventy-seven patients (41 women) met the inclusion criteria with median (interquartile range) age of 66 (55-76) yrs, onset-to-imaging time of 4.8 (3.6-7.7) hours, and baseline National Institutes of Health Stroke Scale score of 13 (9-20). Median cCBF was 38.9 (31.2-44.5) mL per 100 g/min. Higher cCBF predicted good outcome at day 90 (odds ratio, 4.6 [95% CI, 1.4-14.7]; P=0.01), after controlling for baseline National Institutes of Health Stroke Scale, diffusion-weighted imaging lesion volume, and intra-arterial therapy. Conclusions- Higher quantitative cCBF at baseline is a significant predictor of good neurological outcome at day 90. cCBF levels may inform decisions regarding stroke triage, treatment of acute stroke, and general outcome prognosis. Clinical Trial Registration- URL: https://www.clinicaltrials.gov. Unique identifier: NCT02225730