16 research outputs found

    Targeted resequencing identifies genes with recurrent variation in cerebral palsy

    Get PDF
    A growing body of evidence points to a considerable and heterogeneous genetic aetiology of cerebral palsy (CP). To identify recurrently variant CP genes, we designed a custom gene panel of 112 candidate genes. We tested 366 clinically unselected singleton cases with CP, including 271 cases not previously examined using next-generation sequencing technologies. Overall, 5.2% of the naïve cases (14/271) harboured a genetic variant of clinical significance in a known disease gene, with a further 4.8% of individuals (13/271) having a variant in a candidate gene classified as intolerant to variation. In the aggregate cohort of individuals from this study and our previous genomic investigations, six recurrently hit genes contributed at least 4% of disease burden to CP: COL4A1, TUBA1A, AGAP1, L1CAM, MAOB and KIF1A. Significance of Rare VAriants (SORVA) burden analysis identified four genes with a genome-wide significant burden of variants, AGAP1, ERLIN1, ZDHHC9 and PROC, of which we functionally assessed AGAP1 using a zebrafish model. Our investigations reinforce that CP is a heterogeneous neurodevelopmental disorder with known as well as novel genetic determinants.C. L. van Eyk, M. A. Corbett, M. S. B. Frank, D. L. Webber, M. Newman, J. G. Berry, K. Harper, B. P. Haines, G. McMichael, J. A. Woenig, A. H. MacLennan, and J. Gec

    Genomic and phenotypic characterization of 404 individuals with neurodevelopmental disorders caused by CTNNB1 variants

    Get PDF
    Purpose: Germline loss-of-function variants in CTNNB1 cause neurodevelopmental disorder with spastic diplegia and visual defects (NEDSDV; OMIM 615075) and are the most frequent, recurrent monogenic cause of cerebral palsy (CP). We investigated the range of clinical phenotypes owing to disruptions of CTNNB1 to determine the association between NEDSDV and CP. Methods: Genetic information from 404 individuals with collectively 392 pathogenic CTNNB1 variants were ascertained for the study. From these, detailed phenotypes for 52 previously unpublished individuals were collected and combined with 68 previously published individuals with comparable clinical information. The functional effects of selected CTNNB1 missense variants were assessed using TOPFlash assay. Results: The phenotypes associated with pathogenic CTNNB1 variants were similar. A diagnosis of CP was not significantly associated with any set of traits that defined a specific phenotypic subgroup, indicating that CP is not additional to NEDSDV. Two CTNNB1 missense variants were dominant negative regulators of WNT signaling, highlighting the utility of the TOPFlash assay to functionally assess variants. Conclusion: NEDSDV is a clinically homogeneous disorder irrespective of initial clinical diagnoses, including CP, or entry points for genetic testing.Sayaka Kayumi, Luis A. Perez-Jurado, María Palomares, Sneha Rangu, Sarah E. Sheppard, Wendy K. Chung, Michael C. Kruer, Mira Kharbanda, David J. Amor, George McGillivray, Julie S. Cohen, Sixto García-Minaúr, Clare L. van Eyk, Kelly Harper, Lachlan A. Jolly, Dani L. Webber, Christopher P. Barnett, Fernando Santos-Simarro, Marta Pacio-Míguez, Angela del Pozo, Somayeh Bakhtiari, Matthew Deardorff, Holly A. Dubbs, Kosuke Izumi, Katheryn Grand, Christopher Gray, Paul R. Mark, Elizabeth J. Bhoj, Dong Li, Xilma R. Ortiz-Gonzalez, Beth Keena, Elaine H. Zackai, Ethan M. Goldberg, Guiomar Perez de Nanclares, Arrate Pereda, Isabel Llano-Rivas, Ignacio Arroyo, María Angeles Fernandez-Cuesta, Christel Thauvin-Robinet, Laurence Faivre, Aurore Garde, Benoit Mazel, Ange-Line Bruel, Michael L. Tress, Eva Brilstra, Amena Smith Fine, Kylie E. Crompton, Alexander P.A. Stegmann, Margje Sinnema, Servi C.J. Stevens, Joost Nicolai, Gaetan Lesca, Laurence Lion-Francois, Damien Haye, Nicolas Chatron, Amelie Piton, Mathilde Nizon, Benjamin Cogne, Siddharth Srivastava, Jennifer Bassetti, Candace Muss, Karen W. Gripp, Rebecca A. Procopio, Francisca Millan, Michelle M. Morrow, Melissa Assaf, Andres Moreno-De-Luca, Shelagh Joss, Mark J. Hamilton, Marta Bertoli, Nicola Foulds, Shane McKee, Alastair H. MacLennan, Jozef Gecz, Mark A. Corbet

    Redefining cerebral palsies as a diverse group of neurodevelopmental disorders with genetic aetiology

    No full text
    Cerebral palsy is a clinical descriptor covering a diverse group of permanent, non-degenerative disorders of motor function. Around one-third of cases have now been shown to have an underlying genetic aetiology, with the genetic landscape overlapping with those of neurodevelopmental disorders including intellectual disability, epilepsy, speech and language disorders and autism. Here we review the current state of genomic testing in cerebral palsy, highlighting the benefts for personalized medicine and the imperative to consider aetiology during clinical diagnosis. With earlier clinical diagnosis now possible, we emphasize the opportunity for comprehensive and early genomic testing as a crucial component of the routine diagnostic work-up in people with cerebral palsy.Clare L. van Eyk, Michael C. Fahey, Jozef Gec

    Multiomic analysis implicates nuclear hormone receptor signalling in clustering epilepsy

    No full text
    Clustering Epilepsy (CE) is an epileptic disorder with neurological comorbidities caused by heterozygous variants of the X chromosome gene Protocadherin 19 (PCDH19). Recent studies have implicated dysregulation of the Nuclear Hormone Receptor (NHR) pathway in CE pathogenesis. To obtain a comprehensive overview of the impact and mechanisms of loss of PCDH19 function in CE pathogenesis, we have performed epigenomic, transcriptomic and proteomic analysis of CE relevant models. Our studies identified differential regulation and expression of Androgen Receptor (AR) and its targets in CE patient skin fibroblasts. Furthermore, our cell culture assays revealed the repression of PCDH19 expression mediated through ERα and the co-regulator FOXA1. We also identified a protein-protein interaction between PCDH19 and AR, expanding upon the intrinsic link between PCDH19 and the NHR pathway. Together, these results point to a novel mechanism of NHR signaling in the pathogenesis of CE that can be explored for potential therapeutic options.Rebekah de Nys, Clare L. van Eyk, Tarin Ritchie, Rikke S. Møller, Ingrid E. Scheffer, Carla Marini, Rudrarup Bhattacharjee, Raman Kumar, and Jozef Gec

    Definition and diagnosis of cerebral palsy in genetic studies: a systematic review

    No full text
    Aim: To conduct a systematic review of phenotypic definition and case ascertainment in published genetic studies of cerebral palsy (CP) to inform guidelines for the reporting of such studies. Method: Inclusion criteria comprised genetic studies of candidate genes, with CP as the outcome, published between 1990 and 2019 in the PubMed, Embase, and BIOSIS Citation Index databases. Results: Fifty‐seven studies met the inclusion criteria. We appraised how CP was defined, the quality of information on case ascertainment, and compliance with international consensus guidelines. Seven studies (12%) were poorly described, 33 studies (58%) gave incomplete information, and 17 studies (30%) were well described. Missing key information precluded determining how many studies complied with the definition by Rosenbaum et al. Only 18 out of 57 studies (32%) were compliant with the Surveillance of Cerebral Palsy in Europe (SCPE) international guidelines on defining CP. Interpretation: Limited compliance with international consensus guidelines on phenotypic definition and mediocre reporting of CP case ascertainment hinders the comparison of results among genetic studies of CP (including meta‐analyses), thereby limiting the quality, interpretability, and generalizability of study findings. Compliance with the SCPE guidelines is important for ongoing gene discovery efforts in CP, given the potential for misclassification of unrelated neurological conditions as CP.Ryan Pham, Ben W Mol, Jozef Gecz, Alastair H Maclennan, Suzanna C Maclennan, Mark A Corbett, Clare L Van Eyk, Dani L Webber, Lyle J Palmer, Jesia G Berr

    Non-self mutation: double-stranded RNA elicits antiviral pathogenic response in a Drosophila model of expanded CAG repeat neurodegenerative diseases

    No full text
    Inflammation is activated prior to symptoms in neurodegenerative diseases, providing a plausible pathogenic mechanism. Indeed genetic and pharmacological ablation studies in animal models of several neurodegenerative diseases demonstrate that inflammation is required for pathology. However, while there is growing evidence that inflammation-mediated pathology may be the common mechanism underlying neurodegenerative diseases, including those due to dominantly inherited expanded repeats, the proximal causal agent is unknown. Expanded CAG.CUG repeat double stranded RNA causes inflammation-mediated pathology when expressed in Drosophila. Repeat dsRNA is recognized by Dicer2 as a foreign or 'non-self' molecule triggering both antiviral RNA and RNAi pathways. Neither of the RNAi pathway cofactors R2D2 nor loquacious are necessary, indicating antiviral RNA activation. RNA modification enables avoidance of recognition as 'non-self' by the innate inflammatory surveillance system. Human ADAR1 edits RNA conferring 'self' status and when co-expressed with expanded CAG.CUG dsRNA in Drosophila the pathology is lost. Cricket Paralysis Virus protein CrPV-1A is a known antagonist of Argonaute2 in Drosophila antiviral defense. CrPV-1A co-expression also rescues pathogenesis, confirming anti-viral-RNA response. Repeat expansion mutation therefore confers 'non-self' recognition of endogenous RNA, thereby providing a proximal, autoinflammatory trigger for expanded repeat neurodegenerative diseases.Clare L. van Eyk, Saumya E. Samaraweera, Andrew Scott, Dani L. Webber, David P. Harvey, Olivia Mecinger, Louise V. O’Keefe, Jennifer E. Cropley, Paul Young, Joshua Ho, Catherine Suter, and Robert I. Richard

    Aicardi Syndrome Is a Genetically Heterogeneous Disorder

    Get PDF
    Aicardi Syndrome (AIC) is a rare neurodevelopmental disorder recognized by the classical triad of agenesis of the corpus callosum, chorioretinal lacunae and infantile epileptic spasms syndrome. The diagnostic criteria of AIC were revised in 2005 to include additional phenotypes that are frequently observed in this patient group. AIC has been traditionally considered as X-linked and male lethal because it almost exclusively affects females. Despite numerous genetic and genomic investigations on AIC, a unifying X-linked cause has not been identified. Here, we performed exome and genome sequencing of 10 females with AIC or suspected AIC based on current criteria. We identified a unique de novo variant, each in different genes: KMT2B, SLF1, SMARCB1, SZT2 and WNT8B, in five of these females. Notably, genomic analyses of coding and non-coding single nucleotide variants, short tandem repeats and structural variation highlighted a distinct lack of X-linked candidate genes. We assessed the likely pathogenicity of our candidate autosomal variants using the TOPflash assay for WNT8B and morpholino knockdown in zebrafish (Danio rerio) embryos for other candidates. We show expression of Wnt8b and Slf1 are restricted to clinically relevant cortical tissues during mouse development. Our findings suggest that AIC is genetically heterogeneous with implicated genes converging on molecular pathways central to cortical development.Thuong T. Ha ... Mark A. Corbett ... Jozef Gecz ... Michael Lardelli ... Clare L. van Eyk ... Raman Sharma ... et al

    Whole-exome sequencing points to considerable genetic heterogeneity of cerebral palsy

    No full text
    Contains fulltext : 154458.pdf (publisher's version ) (Closed access)Cerebral palsy (CP) is a common, clinically heterogeneous group of disorders affecting movement and posture. Its prevalence has changed little in 50 years and the causes remain largely unknown. The genetic contribution to CP causation has been predicted to be ~2%. We performed whole-exome sequencing of 183 cases with CP including both parents (98 cases) or one parent (67 cases) and 18 singleton cases (no parental DNA). We identified and validated 61 de novo protein-altering variants in 43 out of 98 (44%) case-parent trios. Initial prioritization of variants for causality was by mutation type, whether they were known or predicted to be deleterious and whether they occurred in known disease genes whose clinical spectrum overlaps CP. Further, prioritization used two multidimensional frameworks-the Residual Variation Intolerance Score and the Combined Annotation-dependent Depletion score. Ten de novo mutations in three previously identified disease genes (TUBA1A (n=2), SCN8A (n=1) and KDM5C (n=1)) and in six novel candidate CP genes (AGAP1, JHDM1D, MAST1, NAA35, RFX2 and WIPI2) were predicted to be potentially pathogenic for CP. In addition, we identified four predicted pathogenic, hemizygous variants on chromosome X in two known disease genes, L1CAM and PAK3, and in two novel candidate CP genes, CD99L2 and TENM1. In total, 14% of CP cases, by strict criteria, had a potentially disease-causing gene variant. Half were in novel genes. The genetic heterogeneity highlights the complexity of the genetic contribution to CP. Function and pathway studies are required to establish the causative role of these putative pathogenic CP genes

    Mutations disrupting neuritogenesis genes confer risk for cerebral palsy

    No full text
    In addition to commonly associated environmental factors, genomic factors may cause cerebral palsy. We performed whole-exome sequencing of 250 parent-offspring trios, and observed enrichment of damaging de novo mutations in cerebral palsy cases. Eight genes had multiple damaging de novo mutations; of these, two (TUBA1A and CTNNB1) met genome-wide significance. We identified two novel monogenic etiologies, FBXO31 and RHOB, and showed that the RHOB mutation enhances active-state Rho effector binding while the FBXO31 mutation diminishes cyclin D levels. Candidate cerebral palsy risk genes overlapped with neurodevelopmental disorder genes. Network analyses identified enrichment of Rho GTPase, extracellular matrix, focal adhesion and cytoskeleton pathways. Cerebral palsy risk genes in enriched pathways were shown to regulate neuromotor function in a Drosophila reverse genetics screen. We estimate that 14% of cases could be attributed to an excess of damaging de novo or recessive variants. These findings provide evidence for genetically mediated dysregulation of early neuronal connectivity in cerebral palsy.Sheng Chih Jin … Mark A. Corbett … Clare L. van Eyk … Jesia G. Berry, Kelly Harper … Dani L. Webber, Mahalia S.B. Frank … Suzanna C. MacLennan … Jozef Gecz … Alastair H. MacLennan … et al

    Bi-allelic variants in neuronal cell adhesion molecule cause a neurodevelopmental disorder characterized by developmental delay, hypotonia, neuropathy/spasticity

    No full text
    Cell adhesion molecules are membrane-bound proteins predominantly expressed in the central nervous system along principal axonal pathways with key roles in nervous system development, neural cell differentiation and migration, axonal growth and guidance, myelination, and synapse formation. Here, we describe ten affected individuals with bi-allelic variants in the neuronal cell adhesion molecule NRCAM that lead to a neurodevelopmental syndrome of varying severity; the individuals are from eight families. This syndrome is characterized by developmental delay/intellectual disability, hypotonia, peripheral neuropathy, and/or spasticity. Computational analyses of NRCAM variants, many of which cluster in the third fibronectin type III (Fn-III) domain, strongly suggest a deleterious effect on NRCAM structure and function, including possible disruption of its interactions with other proteins. These findings are corroborated by previous in vitro studies of murine Nrcam-deficient cells, revealing abnormal neurite outgrowth, synaptogenesis, and formation of nodes of Ranvier on myelinated axons. Our studies on zebrafish nrcamaD mutants lacking the third Fn-III domain revealed that mutant larvae displayed significantly altered swimming behavior compared to wild-type larvae (p < 0.03). Moreover, nrcamaD mutants displayed a trend toward increased amounts of a-tubulin fibers in the dorsal telencephalon, demonstrating an alteration in white matter tracts and projections. Taken together, our study provides evidence that NRCAM disruption causes a variable form of a neurodevelopmental disorder and broadens the knowledge on the growing role of the cell adhesion molecule family in the nervous system.Alina Kurolap ... Jozef Gecz ... Clare L. van Eyk ... et. a
    corecore