5 research outputs found

    Rotational IMRT techniques compared to fixed gantry IMRT and Tomotherapy: multi-institutional planning study for head-and-neck cases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent developments enable to deliver rotational IMRT with standard C-arm gantry based linear accelerators. This upcoming treatment technique was benchmarked in a multi-center treatment planning study against static gantry IMRT and rotational IMRT based on a ring gantry for a complex parotid gland sparing head-and-neck technique.</p> <p>Methods</p> <p>Treatment plans were created for 10 patients with head-and-neck tumours (oropharynx, hypopharynx, larynx) using the following treatment planning systems (TPS) for rotational IMRT: Monaco (ELEKTA VMAT solution), Eclipse (Varian RapidArc solution) and HiArt for the helical tomotherapy (Tomotherapy). Planning of static gantry IMRT was performed with KonRad, Pinnacle and Panther DAO based on step&shoot IMRT delivery and Eclipse for sliding window IMRT. The prescribed doses for the high dose PTVs were 65.1Gy or 60.9Gy and for the low dose PTVs 55.8Gy or 52.5Gy dependend on resection status. Plan evaluation was based on target coverage, conformity and homogeneity, DVHs of OARs and the volume of normal tissue receiving more than 5Gy (V<sub>5Gy</sub>). Additionally, the cumulative monitor units (MUs) and treatment times of the different technologies were compared. All evaluation parameters were averaged over all 10 patients for each technique and planning modality.</p> <p>Results</p> <p>Depending on IMRT technique and TPS, the mean CI values of all patients ranged from 1.17 to 2.82; and mean HI values varied from 0.05 to 0.10. The mean values of the median doses of the spared parotid were 26.5Gy for RapidArc and 23Gy for VMAT, 14.1Gy for Tomo. For fixed gantry techniques 21Gy was achieved for step&shoot+KonRad, 17.0Gy for step&shoot+Panther DAO, 23.3Gy for step&shoot+Pinnacle and 18.6Gy for sliding window.</p> <p>V<sub>5Gy </sub>values were lowest for the sliding window IMRT technique (3499 ccm) and largest for RapidArc (5480 ccm). The lowest mean MU value of 408 was achieved by Panther DAO, compared to 1140 for sliding window IMRT.</p> <p>Conclusions</p> <p>All IMRT delivery technologies with their associated TPS provide plans with satisfying target coverage while at the same time respecting the defined OAR criteria. Sliding window IMRT, RapidArc and Tomo techniques resulted in better target dose homogeneity compared to VMAT and step&shoot IMRT. Rotational IMRT based on C-arm linacs and Tomotherapy seem to be advantageous with respect to OAR sparing and treatment delivery efficiency, at the cost of higher dose delivered to normal tissues. The overall treatment plan quality using Tomo seems to be better than the other TPS technology combinations.</p

    Changes of lung parenchyma density following high dose radiation therapy for thoracic carcinomas - an automated analysis of follow up CT scans

    Get PDF
    BACKGROUND: An objective way to qualify the effect of radiotherapy (RT) on lung tissue is the analysis of CT scans after RT. In this analysis we focused on the changes in Hounsfield units (ΔHU) and the correlation with the corresponding radiation dose after RT. METHODS: Pre- and post-RT CT scans were matched and ΔHU was calculated using customized research software. ΔHU was calculated in 5-Gy-intervals and the correlation between ΔHU and the corresponding dose was calculated as well as the regression coefficients. Additionally the mean ΔHU and ΔHU in 5-Gy-intervals were calculated for each tumor entity. RESULTS: The mean density changes at 12 weeks and 6 months post RT were 28,16 HU and 32,83 HU. The correlation coefficient between radiation dose and ΔHU at 12 weeks and 6 months were 0,166 (p = 0,000) and 0,158 (p = 0,000). The resulting regression coefficient were 1439 HU/Gy (p = 0,000) and 1612 HU/Gy (p = 0,000). The individual regression coefficients for each patient range from - 2,23 HU/Gy to 7,46 HU/Gy at 12 weeks and - 0,45 HU/Gy to 10,51 HU/Gy at 6 months. When looking at the three tumor entities individually the highest ΔHU at 12 weeks was seen in patients with SCLC (38,13 HU) and at 6 month in those with esophageal carcinomas (40,98 HU). CONCLUSION: For most dose intervals there was an increase of ΔHU with an increased radiation dose. This is reflected by a statistically significant, although low correlation coefficient. The regression coefficients of all patients show large interindividual differences

    Oxygenation Status in Normal Tissues, Pathological Tissues and Malignant Tumors: A pO2 Database Based on Electron Paramagnetic Resonance (EPR) Oximetry Measurements

    No full text

    Proceedings of the 23rd Paediatric Rheumatology European Society Congress: part one

    No full text
    corecore