1,628 research outputs found

    Decoherence and Recoherence in a Vibrating RF SQUID

    Get PDF
    We study an RF SQUID, in which a section of the loop is a freely suspended beam that is allowed to oscillate mechanically. The coupling between the RF SQUID and the mechanical resonator originates from the dependence of the total magnetic flux threading the loop on the displacement of the resonator. Motion of the latter affects the visibility of Rabi oscillations between the two lowest energy states of the RF SQUID. We address the feasibility of experimental observation of decoherence and recoherence, namely decay and rise of the visibility, in such a system.Comment: 9 pages, 2 figure

    Programming of inhomogeneous resonant guided wave networks

    Get PDF
    Photonic functions are programmed by designing the interference of local waves in inhomogeneous resonant guided wave networks composed of power-splitting elements arranged at the nodes of a nonuniform waveguide network. Using a compact, yet comprehensive, scattering matrix representation of the network, the desired photonic function is designed by fitting structural parameters according to an optimization procedure. This design scheme is demonstrated for plasmonic dichroic and trichroic routers in the infrared frequency range

    Measurement of high-order polarization mode dispersion

    Get PDF
    We demonstrate a new method to measure high-order polarization mode dispersion (PMD) using the Jones matrix exponential expansion. High-order PMD is characterized by measuring a series of characteristic matrices, which are convenient quantities for analyzing PMD effects in the time-domain. An experimental method is developed to estimate the validity range of the exponential expansion

    Quantum Nondemolition Measurement of Discrete Fock States of a Nanomechanical Resonator

    Get PDF
    We study theoretically a radio frequency superconducting interference device integrated with both a nanomechanical resonator and an LC one. By applying adiabatic and rotating wave approximations, we obtain an effective Hamiltonian that governs the dynamics of the mechanical and LC resonators. Nonlinear terms in this Hamiltonian can be exploited for performing a quantum nondemolition measurement of Fock states of the nanomechanical resonator. We address the feasibility of experimental implementation and show that the nonlinear coupling can be made sufficiently strong to allow the detection of discrete mechanical Fock states

    Intermode Dephasing in a Superconducting Stripline Resonator

    Get PDF
    We study superconducting stripline resonator (SSR) made of Niobium, which is integrated with a superconducting interference device (SQUID). The large nonlinear inductance of the SQUID gives rise to strong Kerr nonlinearity in the response of the SSR, which in turn results in strong coupling between different modes of the SSR. We experimentally demonstrate that such intermode coupling gives rise to dephasing of microwave photons. The dephasing rate depends periodically on the external magnetic flux applied to the SQUID, where the largest rate is obtained at half integer values (in units of the flux quantum). To account for our result we compare our findings with theory and find good agreement. Supplementary info at arXiv:0901.3133 .Comment: 5 pages and 5 figures, supplementary info at arXiv:0901.313

    Efficient Coupling between Dielectric-Loaded Plasmonic and Silicon Photonic Waveguides

    Get PDF
    The realization of practical on-chip plasmonic devices will require efficient coupling of light into and out of surface plasmon waveguides over short length scales. In this letter, we report on low insertion loss for polymer-on-gold dielectric-loaded plasmonic waveguides end-coupled to silicon-on-insulator waveguides with a coupling efficiency of 79 ± 2% per transition at telecommunication wavelengths. Propagation loss is determined independently of insertion loss by measuring the transmission through plasmonic waveguides of varying length, and we find a characteristic surface-plasmon propagation length of 51 ± 4 μm at a free-space wavelength of λ = 1550 nm. We also demonstrate efficient coupling to whispering-gallery modes in plasmonic ring resonators with an average bending-loss-limited quality factor of 180 ± 8

    Displacement Detection with a Vibrating RF SQUID: Beating the Standard Linear Limit

    Get PDF
    We study a novel configuration for displacement detection consisting of a nanomechanical resonator coupled to both, a radio frequency superconducting interference device (RF SQUID) and to a superconducting stripline resonator. We employ an adiabatic approximation and rotating wave approximation and calculate the displacement sensitivity. We study the performance of such a displacement detector when the stripline resonator is driven into a region of nonlinear oscillations. In this region the system exhibits noise squeezing in the output signal when homodyne detection is employed for readout. We show that displacement sensitivity of the device in this region may exceed the upper bound imposed upon the sensitivity when operating in the linear region. On the other hand, we find that the high displacement sensitivity is accompanied by a slowing down of the response of the system, resulting in a limited bandwidth
    • …
    corecore