19 research outputs found

    Early Jurassic palaeoenvironments in the Surat Basin, Australia - marine incursion into eastern Gondwana

    Get PDF
    Interpretations of palaeodepositional environments are important for reconstructing Earth history. Only a few maps showing the Jurassic depositional environments in eastern Australia currently exist. Consequently, a detailed understanding of the setting of Australia in Gondwana is lacking. Core, wireline logs, two‐dimensional and three‐dimensional seismic from the Precipice Sandstone and Evergreen Formation in the Surat Basin have been used to construct maps showing the evolution of depositional environments through the Early Jurassic. The results indicate the succession consists of three third‐order sequences (Sequence 1 to Sequence 3) that were controlled by eustatic sea level. The lowstand systems tract in Sequence 1 comprises braidplain deposits, confined to a fairway that parallels the basin centre. The strata were initially deposited in two sub‐basins, with rivers flowing in different orientations in each sub‐basin. The transgressive systems tract of Sequence 1 to lowstand systems tract of Sequence 3 is dominated by fluvio–deltaic systems infilling a single merged basin centre. Finally, the transgressive and highstand systems tracts of Sequence 3 show nearshore environments depositing sediment into a shallow marine basin. In the youngest part of this interval, ironstone shoals are the most conspicuous facies, the thickness and number of which increase towards the north and east. This study interprets a corridor to the open ocean through the Clarence–Moreton Basin, or the Carpentaria and Papuan basins, evidence of which has been eroded. These results challenge a commonly held view that eastern Australia was not influenced by eustasy, and propose a more dynamic palaeogeographic setting comprising a mixture of fluvial, deltaic and shallow marine sedimentary environments. This work can be used to unravel the stratigraphic relationships between Mesozoic eastern Australian basins, or in other basins globally as an analogue for understanding the complex interplay of paralic depositional systems in data poor areas

    Geomorphology and evolution of the gigantic Murray canyons on the Australian southern margin

    No full text
    The Murray canyons are a group of deeply incised submarine canyons on a steep 400 km section of the continental slope off Kangaroo Island, South Australia. Some of the canyons are amongst the largest on Earth. The canyons, some 80 km long, descend from the shelf edge to the abyssal plain 5200 m deep. Sprigg Canyon, the deepest and one of the largest, has walls 2 km high. The thalwegs of the larger canyons are concave in profile, steepest on the upper continental slope (15-30°), with about 4° gradient on the mid slope, then level out on the lower slope to merge with the 1° continental rise. Between canyons, the continental slope is slightly convex to linear with a gradient of about 5-6°. Canyon walls commonly slope at 15-22°. The passive continental margin narrows to 65 km at the Murray canyons and links the Bight and Otway Basins. West-northwest-trending Jurassic-Cretaceous rift structures control the irregular shape of the central canyons. At the western end, large box canyons, 1 km deep, are incised into thick sediments of the Ceduna Sub-basin. Formed by headscarp erosion, some of these canyons have coalesced by canyon capture. The upper parts of most canyons are cut into Cretaceous sediments and in some places are floored by basement rocks. Large deep-water holes, spaced about 5 km apart and up to several hundred metres deep, along the outlet channels of the larger and steeper canyons were probably gouged by turbidity currents resulting from major slope failures at the shelf edge, but may be sites of fluid discharges. Quaternary turbidites were deposited on the abyssal plain more than 100 km from the foot of slope. Canyon downcutting has been episodic since the latest Cretaceous, with peak activity since the Oligocene due to strong glacioeustatic fluctuations and cycles. Canyon development occurred during lowstands and early in transgressions when sediment input at the shelf edge was usually highest. The timing of canyon development is linked to major unconformities in adjacent basins, with downcutting events recorded or inferred during the early Paleocene, Middle Eocene, Early Oligocene, Oligocene/Miocene transition (ca 24 Ma), Middle Miocene (ca 14 Ma) and latest Miocene-Pleistocene. The early phases involved siliciclastic sediments only, while post-Early Eocene canyon cutting was dominated by biogenic carbonates generated on the shelf and upper continental slope. The Murray River dumped its sediment load directly into Sprigg Canyon during extreme lowstands of the Late Pleistocene when the Lacepede Shelf was mostly dry land

    Australian Jurassic sedimentary and fossil successions: current work and future prospects for marine and non-marine correlation

    No full text

    The importance of changing oceanography in controlling late Quaternary carbonate sedimentation on a high-energy, tropical, oceanic ramp: north-western Australia

    No full text
    The North West Shelf is an ocean-facing carbonate ramp that lies in a warm-water setting adjacent to an arid hinterland of moderate to low relief. The sea floor is strongly affected by cyclonic storms, long-period swells and large internal tides, resulting in preferentially accumulating coarse-grained sediments. Circulation is dominated by the south-flowing, low-salinity Leeuwin Current, upwelling associated with the Indian Ocean Gyre, seaward-flowing saline bottom waters generated by seasonal evaporation, and flashy fluvial discharge. Sediments are palimpsest, a variable mixture of relict, stranded and Holocene grains. Relict intraclasts, both skeletal and lithic, interpreted as having formed during sea-level highstands of Marine Isotope Stages (MIS) 3 and 4, are now localized to the mid-ramp. The most conspicuous stranded particles are ooids and peloids, which 14C dating shows formed at 15·4-12·7 Ka, in somewhat saline waters during initial stages of post-Last Glacial Maximum (LGM) sea-level rise. It appears that initiation of Leeuwin Current flow with its relatively less saline, but oceanic waters arrested ooid formation such that subsequent benthic Holocene sediment is principally biofragmental, with sedimentation localized to the inner ramp and a ridge of planktic foraminifera offshore. Inner-ramp deposits are a mixture of heterozoan and photozoan elements. Depositional facies reflect episodic environmental perturbation by riverine-derived sediments and nutrients, resulting in a mixed habitat of oligotrophic (coral reefs and large benthic foraminifera) and mesotrophic (macroalgae and bryozoans) indicators. Holocene mid-ramp sediment is heterozoan in character, but sparse, most probably because of the periodic seaward flow of saline bottom waters generated by coastal evaporation. Holocene outer-ramp sediment is mainly pelagic, veneering shallow-water sediments of Marine Isotope Stage 2, including LGM deposits. Phosphate accumulations at ≈ 200 m. water depth suggest periodic upwelling or Fe-redox pumping, whereas enhanced near-surface productivity, probably associated with the interaction between the Leeuwin Current and Indian Ocean surface water, results in a linear ridge of pelagic sediment at ≈ 140 m. water depth. This ramp depositional system in an arid climate has important applications for the geological record: inner-ramp sediments can contain important heterozoan elements, mid-ramp sediments with bedforms created by internal tides can form in water depths exceeding 50 m, saline outflow can arrest or dramatically slow mid-ramp sedimentation mimicking maximum flooding intervals, and outer-ramp planktic productivity can generate locally important fine-grained carbonate sediment bodies. Changing oceanography during sea-level rise can profoundly affect sediment composition, sedimentation rate and packaging. © 2004 International Association of Sedimentologists
    corecore